This documentation page applies to an outdated AMT version (1.3.0). Click here for the most recent page.
function [WaveMout, nPhase] = sig_tabuchi2016(CondName, sfs, f0, n1, n2, spl, durms, C, varargin)
% SIG_TABUCHI2016 Generate schroeder-phase harmonic complex with Roex frequency weighting
%
% Input parameters:
% CondName : can be OnFreqPre or OffFreqPre
% sfs : sampling frequency
% f0 : fundamental frequency
% n1 : the lowest frequency component (f0*n1 kHz)
% n2 : the highest frequency component (f0*n2 kHz)
% spl : level [dB SPL]
% durms : duration [ms]
% C : C (curvature) value
%
% Output parameters:
% WaveMout : output signal
% nPhase : phase index
%
% this function generates a Roex-weighted Schroeder complex
%
% Optional parameters:
%
% 'leadms',leadms leading silence [ms]
%
% 'trailms',trailms trailing silence [ms]
%
% 'pref',pref reference pressure [pa]
%
% See also: tabuchi2016
%
% Url: http://amtoolbox.org/amt-1.3.0/doc/signals/sig_tabuchi2016.php
% #StatusDoc: Good
% #StatusCode: Submitted
% #Verification: Verified
% #Requirements:
% #Author: Hisaaki Tabuchi
% #Author: Clara Hollomey (adaptations for AMT)
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
ListenerStr = 'GrandMeanSd';
if strcmp(CondName,'OffFreqPre')
CondStr = 'OffFreq';
elseif strcmp(CondName,'OnFreqPre')
CondStr = 'OnFreq';
else
error('CondName is not defined.')
end
if spl == 90 && strcmp(CondName,'OnFreqPre')
f_wei_lin_vec = [];
else
data = amt_load('tabuchi2016', ['Attenu_Roex_' ListenerStr '_', ...
CondStr '_' int2str(spl), 'dB.mat'], 'f_wei_lin_vec');
f_wei_lin_vec = data.f_wei_lin_vec;
end
definput.keyvals.leadms = 0;
definput.keyvals.trailms = 0;
definput.keyvals.pref=0.00002;
[~,kv] = ltfatarghelper({},definput,varargin);
% synthesize
smpl = 1/sfs;
tt = (smpl:smpl:durms)'; % waveform should be a column vector %
% Schroeder harmonic complexes: Lentz et al (2001)
nPhase = NaN(n2-n1+1,1);
wav1 = zeros(length(tt),1);
MatFlag = 1;
for harmnumLoop = n1:n2
nPhase(MatFlag,1) = C * pi * harmnumLoop * (harmnumLoop+1)/(n2-n1+1);
if isempty(f_wei_lin_vec) == 0 % frequency weighting by Roex filter
wav1 = wav1 + f_wei_lin_vec(MatFlag) * cos(( 2 * pi * harmnumLoop * f0 * tt)+ nPhase(MatFlag,1) );
else % no frequency weighting
wav1 = wav1 + cos(( 2 * pi * harmnumLoop * f0 * tt)+ nPhase(MatFlag,1) );
end
MatFlag = MatFlag + 1;
end
% leading zeros
nz1 = round(kv.leadms/smpl);
wav1 = cat(1,zeros(nz1,1),wav1);
% trailing zeros
nz2 = round(kv.trailms/smpl);
wav1 = cat(1,wav1,zeros(nz2,1));
% scale amplitude
% check amplitude, excluding leading/trailing silence
mxx=max(abs(wav1));
n1=find( wav1>(0.02*mxx),1,'first' );
n2=find( wav1>(0.02*mxx),1,'last' );
ss=sum(wav1(n1:n2).*wav1(n1:n2));
rrr = sqrt( ss/length(wav1(n1:n2)) );
if rrr>0
dbtmp=20*log10( rrr/kv.pref );
dbdif=spl-dbtmp;
sfact=10^(dbdif/20);
WaveMout=sfact*wav1;
else
WaveMout=wav1;
end
end