function [output,cf] = verhulst2018(insig,fs,fc_flag,varargin)
%VERHULST2018 Cochlear transmission-line model (improved, incl. brainstem)
%
% Usage:
% output = verhulst2018(insig,fs,fc_flag)
% [output, cf] = verhulst2018(insig,fs,fc_flag, ...)
%
% Input parameters:
%
% insig : the input signal to be processed. Each column is
% processed in parallel, so it is possible to run several simulations in parallel
% fs : sampling rate (Hz)
% fc_flag : list of frequencies specifying the probe positions
% along the basilar membrane, or all to probe all
% 1000 cochlear sections, or abr to probe 401 locations
% between 112 and 12000 Hz.
% numH : number of high-SR fibers. Must be larger than zero.
% numM : number of medium-SR fibers. Can be zero.
% numL : number of low-SR fibers. Can be zero.
% ic : calculate the IC responses
%
% Output parameters:
%
% cf : Center frequencies (Hz) of the probed basiliar membrane sections.
% output : Structure with the following fields:
% fs_an : Sample rate (Hz) of the output.
% fs_abr : Sample rate (Hz) of the brainstem sections (IC, CN, W1, W3, and W5).
% w1 : Wave 1, output of the AN model.
% w3 : Wave 3, output of the CN model.
% w5 : Wave 5, output of the IC model.
% an_summed : Sum of HSR, MSR and LSR responses (per channel) and the input to the CN (modelled by verhulst2015_cn). Provided by default. Can be disabled by the flag no_an.
% ihc : IHC receptor potential. Provided by default. Can be disabled by the flag no_ihc.
% cn : Detailed output of the CN. Provided by default. Can be disabled by the flag no_cn.
% ic : Detailed output of the IC. Provided by default. Can be disabled by the flag no_ic.
%
% This function computes the basilar membrane displacement.
%
%
% The output can optionally provide the following information:
%
% 'anfH' responses of the high-SR fibers. Optional, only when called with flag anfH.
%
% 'anfM' responses of the medium-SR fibers. Optional, only when called with flag anfM.
%
% 'anfL' responses of the low-SR fibers. Optional, only when called with flag anfL.
%
% 'v' velocity of the basilar membrane sections [time section channel] and input to the AN (modelled by VERHULST2018_ihctransduction. Optional, provided only when called with flag v.
%
% 'y' displacement of the basilar membrane sections [time section channel]. Can be disabled by the flag no_y.
%
% 'oae' ottoacoustic emission as sound pressure at the middle ear. Can be disabled by the flag oae.
%
% References:
% S. Verhulst, A. Altoè, and V. Vasilkov. Functional modeling of the
% human auditory brainstem response to broadband stimulation.
% hearingresearch, 360:55--75, 2018.
%
%
% License
% --------
%
% This model is licensed under the UGent Academic License. For non-commercial academic research,
% you can use this file and/or modify it under the terms of that license. Further usage details
% are provided in the in the AMT directory "licences".
%
% See also: verhulst2015 verhulst2018 demo_verhulst2018 demo_verhulst2012
% verhulst2018_ihctransduction verhulst2015_cn
% verhulst2015_ic verhulst2018_auditorynerve exp_verhulst2012
% verhulst2012 verhulst2015
% verhulst2018 middleearfilter data_takanen2013 takanen2013_periphery
% exp_osses2022 exp_takanen2013 takanen2013
%
%
% Url: http://amtoolbox.org/amt-1.4.0/doc/models/verhulst2018.php
% #License: ugent
% #StatusDoc: Good
% #StatusCode: Good
% #Verification: Unknown
% #Requirements: MATLAB M-Signal PYTHON C
% #Author: Alejandro Osses (2020): primary implementation based on https://github.com/HearingTechnology/Verhulstetal2018Model
% #Author: Piotr Majdak (2021): adaptations for the AMT 1.0
% This file is licenced under the terms of the UGent Academic License, which details can be found in the AMT directory "licences" and at <https://raw.githubusercontent.com/HearingTechnology/Verhulstetal2018Model/master/license.txt>.
% For non-commercial academic research, you can use this file and/or modify it under the terms of that license. This file is distributed without any warranty; without even the implied warranty of merchantability or fitness for a particular purpose.
amt_info('once');
% ------ Checking of input parameters ------------
if nargin<3
error('%s: Too few input arguments.',upper(mfilename));
end;
if ~isnumeric(insig)
error('%s: insig must be numeric.',upper(mfilename));
end;
if ~isnumeric(fs) || ~isscalar(fs) || fs<=0
error('%s: fs must be a positive scalar.',upper(mfilename));
end;
definput.import={'verhulst2018'}; % load defaults from arg_verhulst2018
[flags,keyvals] = ltfatarghelper({},definput,varargin);
IrrPct = keyvals.IrrPct;
storeflag = ' ';
if flags.do_oae, storeflag = [storeflag 'e']; end
if flags.do_y , storeflag = [storeflag 'y']; end
if flags.do_ihc, storeflag = [storeflag 'i']; end
[Nr_signals,idx]=min(size(insig));
irregularities=keyvals.irr_on.*ones(1,Nr_signals);
%%% Fix model parameters so far: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
subject = keyvals.subject; % seed
non_linear_type = keyvals.non_linear_type;
% Number of neurones: 13-3-3 => no synaptopathy, any loss of neurones => synaptopathy
numH = keyvals.numH;
numM = keyvals.numM;
numL = keyvals.numL;
if idx == 1
error('If multiple signals are used as input make sure each column is one signal')
end
%%% Stage 1A. Outer ear: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if flags.do_outerear
% Same outer ear filter as in other peripheral models
hp_fir = headphonefilter(fs);% Getting the filter coefficients at fs
N = ceil(length(hp_fir)/2); % group delay for a FIR filter of order length(hp_fir)
M = size(insig,2);
insig = [insig; zeros(N,M)]; % group delay compensation: step 1 of 2.
insig = filter(hp_fir,1,insig); % filtering
insig = insig(N+1:end,1:M); % group delay compensation: step 2 of 2
end
%%% Stage 1B. Middle ear: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[b,a] = middleearfilter(fs,'verhulst2018');
if flags.do_middleear
insig = filter(b,a,insig);
end
if flags.do_no_middleear
% If no middle-ear filter is applied, a gain/attenuation equivalent to
% the level in the filter band-pass is applied to the input signal. This
% is important to get an appropriate compression in the subsequent filter
% bank.
K = 8192; % arbitrary
h = ones(K,1);
h = h.*freqz(b,a,K);
me_gain_TF = max( 20*log10(abs(h)) ); % max of the filter response
insig = gaindb(insig,me_gain_TF);
end
%%% Stage 2. Cochlear filter bank - Transmission line model: %%%%%%%%%%%%%%
% 2.1 Signal preprocessing:
fs_in = fs;
if fs ~= keyvals.fs_up
insig = resample(insig,keyvals.fs_up,fs);
fs = keyvals.fs_up;
end
stim=transpose(insig); % transpose it (python C-style row major order)
if(ischar(fc_flag)) %if probing all sections 1001 output (1000 sections plus the middle ear)
switch fc_flag
case 'all'
Nr_sections = 1000;
case 'half'
Nr_sections = 500;
case 'abr'
Nr_sections = 401;
% Nothing to do, it is correctly formatted
otherwise
error('fc flag not recognised it should be either ''all'',''abr'',''half'', or a numeric array');
end
fc_str = fc_flag;
else
% then fc is a numeric array that will be passed as a column vector
fc_flag=round(fc_flag(:));
fc_str = 'custom CF(s)';
Nr_sections = length(fc_flag);
end
probes=fc_flag;
% Load poles for the selected hearing profile
poles=amt_load('verhulst2018','Poles.mat','Poles');
if ~isfield(poles.Poles,keyvals.hearing_profile)
error(['Hearing profile ' keyvals.hearing_profile ' not available.']);
end
sheraPo=poles.Poles.(keyvals.hearing_profile);
dir_model = fullfile(amt_basepath,'environments','verhulst2018',filesep);
dir_data = fullfile(dir_model,'out',filesep);
version_year = 2018;
% if ~exist(fullfile(dir_model,'tridiag.so'),'file')
% error('/environments/verhulst2018/tridiag.so library is missing. Run amt_mex');
% end
channels = Nr_signals;
L_samples = length(stim(1,:));
amt_disp('VERHULST 2018: The following parameters will be passed to Python:',flags.disp);
amt_disp([' Number of signals to be processed: ',num2str(channels),' channels'],flags.disp);
amt_disp([' Cochlear hearing profile: ',keyvals.hearing_profile,' (poles between ',num2str(sheraPo(1)),' and ',num2str(sheraPo(end)),')'],flags.disp);
amt_disp([' Number of auditory nerve fibres: (',num2str([numH,numM,numL]),') (HSR,MSR,LSR)'],flags.disp);
amt_disp([' Number of cochlear sections to be stored: flag ',num2str(fc_str),' (all=1000, half=500, abr=401)'],flags.disp);
amt_disp([' Seed number: ',num2str(subject),' (subject ''variable'')'],flags.disp);
amt_disp([' Irregularities=',num2str(irregularities(1)),' (1=on,0=off), IrrPrct=',num2str(IrrPct)],flags.disp);
amt_disp([' Non linear type=',num2str(non_linear_type),'(''vel'' or ''disp'')'],flags.disp);
amt_disp([' Extra variables to be saved: ',num2str(storeflag),' (storeflag)'],flags.disp);
%%% Storing input, change dir, run the model, and come back
amt_disp('Cochlear processing...','volatile');
in.stim=stim; in.fs=fs; in.channels=channels; in.subject=subject;
in.sheraPo=sheraPo; in.irregularities=irregularities;
in.probes=probes; in.storeflag=storeflag; in.IrrPct=IrrPct;
in.non_linear_type=non_linear_type; in.version_year=version_year;
out.cf=[Nr_sections,1,Nr_signals];
out.v=[Nr_sections,L_samples,Nr_signals];
if flags.do_y, out.y=[Nr_sections,L_samples,Nr_signals]; end
if flags.do_oae, out.e=[L_samples,1,Nr_signals]; end
out=amt_extern('Python','verhulst2018','run_cochlear_model.py',in,out);
v = out.v;
if flags.do_no_v, out = rmfield(out,'v'); end % reduce memory usage if v not used.
fs_abr = keyvals.subfs; % default subfs = 20000 Hz
fs_an = keyvals.subfs;
DECIMATION = fs/keyvals.subfs;
output(1:Nr_signals) = struct('fs_bm',fs_in);
for ii=1:Nr_signals
amt_disp(['Neural processing ' num2str(ii) ' of ' num2str(Nr_signals)],'volatile');
v_here = squeeze(v(:,:,ii))';
output(ii).cf=squeeze(out.cf(:,1,ii));
if flags.do_v, output(ii).v=resample(v_here,fs_in,fs); end
if flags.do_y , output(ii).y=resample(squeeze(out.y(:,:,ii))',fs_in,fs); end
if flags.do_oae, output(ii).oae=resample(squeeze(out.e(:,:,ii)),fs_in,fs); end
%%% Stage 3. Inner hair cell model: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if flags.do_ihc || flags.do_an || flags.do_cn || flags.do_ic
outsig = verhulst2018_ihctransduction(v_here,fs,version_year,keyvals); % unscaled input
output(ii).ihc = resample(outsig,fs_in,fs);
output(ii).fs_ihc=fs_in;
end
if flags.do_an || flags.do_cn || flags.do_ic
%%% Stage 4: Auditory nerve model and Wave I: %%%%%%%%%%%%%%%%%%%%%%%%%
% Reducing the sampling frequency: Decimation.
n = 30;
for jj = 1:size(outsig,2)
Vm_res(:,jj) = decimate(outsig(:,jj),DECIMATION,n,'fir'); % n-th order FIR filter before decimation
end
Vm_res(1:DECIMATION,:) = repmat(outsig(1,:),DECIMATION,1);
if numH ~= 0 % HSR neurones
anfH = verhulst2018_auditorynerve(Vm_res,fs_abr,keyvals.kSR_H,keyvals.kmax_H,version_year);
else
error('There should be at least one HSR neurone, set numH to a non-null value...')
end
if numM ~= 0 % MSR neurones
anfM = verhulst2018_auditorynerve(Vm_res,fs_abr,keyvals.kSR_M,keyvals.kmax_M,version_year);
else
anfM = zeros(size(Vm_res));
end
if numL ~= 0 % LSR neurones
anfL = verhulst2018_auditorynerve(Vm_res,fs_abr,keyvals.kSR_L,keyvals.kmax_L,version_year);
else
anfL = zeros(size(Vm_res)); % empty array if no anfL, saves some computation power
end
if flags.do_anfH, output(ii).anfH = anfH; end
if flags.do_anfM, output(ii).anfM = anfM; end
if flags.do_anfL, output(ii).anfL = anfL; end
outsig = numL*anfL+numM*anfM+numH*anfH;
if flags.do_an, output(ii).an_summed = outsig; end
% Loading scaling constants for Wave I, III, and V:
M1 = keyvals.M1;
M3 = keyvals.M3;
M5 = keyvals.M5;
switch Nr_sections
case {401,500}
cal_factor = 1; % same cochlear tuning in both configurations
case 1000
cal_factor = 0.5; % more dense cochlear resolution (twice as many channels)
otherwise
cal_factor = 1;
end
output(ii).w1 = cal_factor*M1*sum(outsig,2);
end
if flags.do_cn || flags.do_ic
%%% Stage 5: Cochlear nucleus: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Tex = keyvals.Tex_cn;
Tin = keyvals.Tin_cn;
dly = keyvals.dly_cn;
A = keyvals.Acn;
S = keyvals.Scn;
outsig = verhulst2015_cn(outsig,fs_abr,Tex,Tin,dly,A,S);
if flags.do_cn
if ~iscell(outsig)
output(ii).cn = outsig;
else
output(ii).cn_mfb = outsig;
output(ii).cn = il_sum_cell(outsig);
end
end
if flags.do_no_mfb
% Only one CN filter: outsig is numeric
output(ii).w3 = cal_factor*M3*sum(outsig,2);
end
if flags.do_mfb
% CN from the modulation filter bank: outsig is a cell variable
output(ii).w3 = cal_factor*M3*sum(il_sum_cell(outsig),2);
end
end
if flags.do_ic
%%% Stage 6: Inferior Colliculus: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Tex = keyvals.Tex_ic;
Tin = keyvals.Tin_ic;
dly = keyvals.dly_ic;
A = keyvals.Aic;
S = keyvals.Sic;
outsig = verhulst2015_ic(outsig,fs_abr,Tex,Tin,dly,A,S);
if flags.do_ic
if ~iscell(outsig)
output(ii).ic = outsig;
else
output(ii).ic_mfb = outsig;
output(ii).ic = il_sum_cell(outsig);
end
end
if flags.do_no_mfb
% Only one IC filter: outsig is numeric
output(ii).w5 = cal_factor*M5*sum(outsig,2);
end
if flags.do_mfb
% IC from the modulation filter bank: outsig is a cell variable
output(ii).w5 = cal_factor*M5*sum(il_sum_cell(outsig),2);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
output(ii).fs_an = fs_an;
output(ii).fs_abr = fs_abr;
end
output(1).keyvals = keyvals;
amt_disp();
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function inoutsig = il_sum_cell(inoutsig)
for i = 2:length(inoutsig)
inoutsig{1} = inoutsig{1}+inoutsig{i};
end
inoutsig = inoutsig{1}; % keeps only the first cell, and converts it into a double array