This documentation page applies to an outdated AMT version (1.4.0). Click here for the most recent page.
function y = bruce2018_ffgn(N, tdres, Hinput, noiseType, mu, sigma)
%BRUCE2018_FFGN Fast (exact) fractional Gaussian noise and Brownian motion generator
% Usage: y = bruce2018_ffgn(N, tdres, Hinput, noiseType, mu, sigma)
%
% Input parameters:
% N : is the length of the output sequence
% tdres : is the time resolution (1/sampling rate)
% Hinput : is the Hurst index of the resultant noise (0 < H <= 2). For 0 < H <= 1,the output will be fractional Gaussian noise with Hurst index H. For
% 1 < H <= 2, the output will be fractional Brownian motion with Hurst
% index H-1. Either way, the power spectral density of the output will
% be nominally proportional to 1/f^(2H-1)
% noiseType : is 0 for fixed fGn noise and 1 for variable fGn
% mu : is the mean of the noise. [default = 0]
% sigma : is the standard deviation of the noise [default = 1]
%
% Output parameters:
% y : a sequence of fractional Gaussian noise with a mean of zero and a
% standard deviation of one or fractional Brownian motion derived from such
% fractional Gaussian noise.
%
% BRUCE2018_FFGN returns a vector containing a sequence of fractional Gaussian
% noise or fractional Brownian motion. The generation process uses an FFT which makes it
% very fast.
%
% References:
% R. Davies and D. Harte. Tests for hurst effect. Biometrika, 74(1):95 --
% 101, 1987.
%
% J. Beran. Statistics for long-memory processes, volume 61. CRC Press,
% 1994.
%
% J. Bardet. Statistical study of the wavelet analysis of fractional
% brownian motion. Information Theory, IEEE Transactions on,
% 48(4):991--999, 2002.
%
%
% Url: http://amtoolbox.org/amt-1.4.0/doc/modelstages/bruce2018_ffgn.php
% #StatusDoc: Good
% #StatusCode: Perfect
% #Verification: Verified
% #Requirements: MATLAB MEX M-Signal
% #Author: B. Scott Jackson (2005)
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
% Check to see if running under Matlab or Octave
if exist ('OCTAVE_VERSION', 'builtin') ~= 0
pkg load signal;
end
%---- Check input arguments ---------- %
if ( (nargin < 5) || (nargin > 6) )
error('Requires Five to Six input arguments.')
end
if (prod(size(N)) ~= 1) || (prod(size(Hinput)) ~= 1) || ~isnumeric(N) || ~isnumeric(Hinput) ...
|| ~isreal(N) || ~isreal(Hinput) || ~isfinite(N) || ~isfinite(Hinput)
error('All input arguments must be finite real scalars.')
end
if (N <= 0)
error('Length of the return vector must be positive.')
end
if (tdres > 1)
error('Original sampling rate should be checked.')
end
if (Hinput < 0) || (Hinput > 2)
error('The Hurst parameter must be in the interval (0,2].')
end
if (nargin > 4)
if (prod(size(mu)) ~= 1) || ~isnumeric(mu) || ~isreal(mu) || ~isfinite(mu)
error('All input arguments must be finite real scalars.')
end
end
if (nargin > 5)
if (prod(size(sigma)) ~= 1) || ~isnumeric(sigma) || ~isreal(sigma) || ~isfinite(sigma)
error('All input arguments must be finite real scalars.')
end
if (sigma <= 0)
error('Standard deviation must be greater than zero.')
end
end
% Downsampling No. of points to match with those of Scott jackson (tau 1e-1)
resamp = ceil(1e-1/tdres);
nop = N; N = ceil(N/resamp)+1;
if (N<10)
N = 10;
end
% Determine whether fGn or fBn should be produced.
if ( Hinput <= 1 )
H = Hinput;
fBn = 0;
else
H = Hinput - 1;
fBn = 1;
end
% Calculate the fGn.
if (H == 0.5)
y = randn(1, N); % If H=0.5, then fGn is equivalent to white Gaussian noise.
else
% If this function was already in memory before being called this time,
% AND the values for N and H are the same as the last time it was
% called, then the following (persistent) variables do not need to be
% recalculated. This was done to improve the speed of this function,
% especially when many samples of a single fGn (or fBn) process are
% needed by the calling function.
persistent Zmag Nfft Nlast Hlast
if isempty(Zmag) || isempty(Nfft) || isempty(Nlast) ||isempty(Hlast) || N ~= Nlast || H ~= Hlast
% The persistent variables must be (re-)calculated.
Nfft = 2^ceil(log2(2*(N-1)));
NfftHalf = round(Nfft/2);
k = [0:NfftHalf, (NfftHalf-1):-1:1];
Zmag = 0.5 .* ( (k+1).^(2.*H) - 2.*k.^(2.*H) + (abs(k-1)).^(2.*H) );
clear k
Zmag = real(fft(Zmag));
if ( any(Zmag < 0) )
error('The fast Fourier transform of the circulant covariance had negative values.');
end
Zmag = sqrt(Zmag);
% Store N and H values in persistent variables for use during subsequent calls to this function.
Nlast = N;
Hlast = H;
end
if noiseType == 0 % for fixed fGn
% rng(16); % fixed seed from MATLAB
randn('seed',37) % fixed seed from MATLAB
end
Z = Zmag.*(randn(1,Nfft) + i.*randn(1,Nfft));
y = real(ifft(Z)) .* sqrt(Nfft);
clear Z
y((N+1):end) = [];
end
% Convert the fGn to fBn, if necessary.
if (fBn)
y = cumsum(y);
end
% Resampling back to original (1/tdres): match with the AN model
y = resample(y,resamp,1); % Resampling to match with the AN model
% define standard deviation
if (nargin < 6)
if mu<0.2
sigma = 1;%5
else
if mu<20
sigma = 10;
else
sigma = mu/2;
end
end
end
y = y*sigma;
y = y(1:nop);