This documentation page applies to an outdated AMT version (1.4.0). Click here for the most recent page.
function [ANbinPredictions, weightedPredictions, mappingData] = ...
kelvasa2015_localize(mappingData, SpkDiffPerBin,...
SpkSumPerBin, varargin)
%KELVASA2015_LOCALIZE uses calibration data to map bilateral spike rate differences to an azimuthal angle
% Usage: [ANbinPredictions, weightedPredictions, mappingData] = ...
% kelvasa2015_localize(mappingData, SpkDiffPerBin, SpkSumPerBin, varargin)
%
% Input parameters:
% mappingData : Structure containing the necessary data to map
% bilateral spike rate differences to a predicted
% azimuthal angle.
%
% SpkDiffPerBin : N x M matrix of chan2 - chan1 spike rate
% differences in spikes/sec where N are user defined
% AN frequency bands and M are time bins over the
% entire signal.
%
% SpkSumPerBin : N x M matrix of chan2 + chan1 spike rate
% sums in spikes/sec where N are user defined
% AN frequency bands and M are time bins over the
% entire signal.
%
% Output parameters:
% ANbinPredictions : N x M matrix of bin azimuthal angle predictions
% in degrees with N being the number of user
% defined AN frequency bands and M being the
% number of time windows.
%
% weightedPredictions: 1 x M vector of bin weighted azimuthal angle
% predictions in degrees with M being the number
% of time windows.
%
% KELVASA2015_localize(APvec,sigLengthSec,varargin)implements a user
% defined localization model as detailed in (Kelvasa & Dietz (2015)) to
% map bilateral spike rate differences to a predicted azimuithal
% source angle.
%
% Fields added to mappingData:
%
% 'RateLevelPerBin' N x M matrix of monaural spike rates in
% spikes/sec with N being the number of user
% defined AN frequency bands and M being the
% range of signal levels in dB SPL over which
% the calibration signal was processed.
%
% 'ILDcentFreq' 1 x N vector of center frequencies in Hz used
% in CI processing that correspond to the N user
% defined AN frequency bands.
%
% 'ILD' N x M matrix of interaural level differences in
% dB SPL for each of the the N user defined AN
% frequency bands over the M azimuthal angles for
% which the signal was processed.
%
% 'IldAngSlope' 1 x N vector of linear regression slopes in
% dB/degree for each of the the N user defined AN
% frequency bands.
%
% 'RateLevelSlope' 1 x N vector of linear regression slopes in
% spike Rate/dB for each of the the N user defined
% AN frequency bands.
%
% 'spkDiffAziSlopes' 1 x N vector of linear regression slopes in
% bilateral spike rate differences /dB for each
% of the the N user defined AN frequency bands.
%
% 'Avg' M x N vector of spike rate difference averages
% over all time bins where N are user defined AN
% frequency bands and M are the range of azimuthal
% angles over which the signal was processed.
%
% 'covariance' M x N vector of spike rate difference covariances
% over all time bins where N are user defined AN
% frequency bands and M are the range of azimuthal
% angles over which the signal was processed.
%
%
% References:
% D. Kelvasa and M. Dietz. Auditory model-based sound direction
% estimation with bilateral cochlear implants. Trends in Hearing,
% 19:2331216515616378, 2015.
%
%
% Url: http://amtoolbox.org/amt-1.4.0/doc/modelstages/kelvasa2015_localize.php
% #StatusDoc: Good
% #StatusCode: Good
% #Verification: Unknown
% #Requirements: MATLAB M-Signal M-Stats
% #Author: Daryl Kelvasa (2016)
% #Author: Mathias Dietz (2016)
% #Author: Clara Hollomey (2022)
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Check input paramters
if nargin<4
error('%s: Too few input parameters.',upper(mfilename));
end;
%Retrieve and compute model paramters
definput.import={'kelvasa2015'};
[~,kv] = ltfatarghelper({},definput,varargin);
%% Map binaural spike rate differences to an azimuthal angle using the
%specified localization model as per Kelvasa and Dietz 2015
if strcmp(kv.localizationModel, 'RateLevel')
mappingData = computeRateLevelMapping(mappingData,kv);
%1/(Rate/level * ILD/angle) = angle/rateDiff
slopes =1./(mappingData.IldAngSlope.*...
mappingData.RateLevelSlope);
slopes = repmat(slopes',1,size(SpkSumPerBin,2));
%This is where the magic happens
predictions = slopes .* SpkDiffPerBin;
%Limit model predictions
ANbinPredictions = round(max(min(predictions,90),-10)./5).*5;
%Compute spike sume weighted prediction over all bins
weights = SpkSumPerBin./...
repmat(sum(SpkSumPerBin,1),kv.numBin,1);
weights(isnan(weights)) = 0; %for when there are no spikes
weightedPredictions = sum(ANbinPredictions.*weights,1);
weightedPredictions = round(weightedPredictions./5).*5;
mappingData.spkDiffAziSlopes = slopes;
elseif strcmp(kv.localizationModel, 'ResponseDifferenceAN')
mappingData = computeResponseDiffMapping(mappingData,kv);
%Prepare linear mapping
slopes =1./(mappingData.ResponseDiffSlope);
slopes = repmat(slopes',1,size(SpkSumPerBin,2));
%This is where the magic happens
predictions = slopes .* SpkDiffPerBin;
%Limit model predictions
ANbinPredictions = round(max(min(predictions,90),-10)./5).*5;
%Compute spike sume weighted prediction over all bins
weights = SpkSumPerBin./...
repmat(sum(SpkSumPerBin,1),kv.numBin,1);
weights(isnan(weights)) = 0; %for when there are no spikes
weightedPredictions = sum(ANbinPredictions.*weights,1);
weightedPredictions = round(weightedPredictions./5).*5;
else % 'MaxLikelihood'
%Compute statistical paramters for N (num of bins) dimensional PDFs
Avg = zeros(numel(kv.azis),numel(kv.binPos));
covariance = zeros(numel(kv.azis),numel(kv.binPos));
for bin = 1 : numel(kv.binPos)
data1 = squeeze(mean(...
mappingData.calSpikeDiffPerNeuronPerAzi(:,kv.binPosInd(bin,:),:),2));
Avg(:,bin) = mean(data1,2);
covariance(:,bin) = max(std(data1,[],2).^2,0.001);
end
mappingData.Avg = Avg;
mappingData.covariance = covariance;
weightedPredictions = computeMaxLikelihood(mappingData, ...
SpkDiffPerBin, kv);
%No bin predictions in this model
ANbinPredictions = [];
end
end
%% Helper functions
%% Linear Rate Level localization model
function mappingData = computeRateLevelMapping(mappingData,kv)
%Initialize variables
ILDcentFreq = zeros(1,numel(kv.binPos));
ILD = zeros(numel(ILDcentFreq),...
numel(kv.azis));
IldAngSlope = zeros(1,numel(ILDcentFreq));
RateLevelSlope = zeros(1,numel(ILDcentFreq));
RateLevelPerBin = zeros(numel(kv.binPos),numel(kv.dBRange));
for bin = 1 : numel(kv.binPos)
%Find center frequencies of electrodes
[~,ind] = min(abs(kv.X_EL - kv.binPos(bin)));
ILDcentFreq(bin) = ((kv.vUpperFreq(ind) - kv.vLowerFreq(ind))/2)...
+ kv.vLowerFreq(ind);
%Compute ILD using gammatone filter
%Preset gamma filter parameters
attenuation_db = 3;
filter_order = 4;
for ang = 1 : numel(kv.azis)
%Get HRTF signal at angle
HRTFsig = squeeze(mappingData.calibHRTFsig(ang,:,:));
%ERB bandwidth
bandwidth_hz = 24.7*(4.37*ILDcentFreq(bin)*0.001 + 1);
%Implement gammatone filter
filter = hohmann2002_filter(kv.FS_ACE, ILDcentFreq(bin),...
bandwidth_hz, attenuation_db, filter_order);
[filtSigA, ~] = hohmann2002_process(filter, HRTFsig(:,1));
[filtSigB, ~] = hohmann2002_process(filter, HRTFsig(:,1));
%Compute ILD
ILD(bin,ang) = 20*log10(rms(real(filtSigB))) - ...
20*log10(rms(real(filtSigA)));
end
%Compute linear approximation of ILD data (includes mirroring
%of data to negative azimuth and setting middle to 0)
[~, ind] = min(abs(kv.azis - kv.AziCrvfitRange));
crvfitRange = (-kv.azis(ind) : 5 : kv.azis(ind));
data1 = ILD(bin,1:ind); data1(1) = 0;
data2 = fliplr(data1(2:end)); data = [-data2,data1];
[a, ~] = polyfit(crvfitRange, data,1);
IldAngSlope(bin) = a(1);
%Bin Rate Level Data
data = mappingData.calSpikeRatePerNeuronPerLevel;
data = mean(data(:,kv.binPosInd(bin,:)),2);
RateLevelPerBin(bin,:) = data;
%Compute linear approximation of rate level data
[~, indLow] = min(abs(kv.dBRange - ...
kv.RateLevelCrvfitRange(1)));
[~, indHigh] = min(abs(kv.dBRange - ...
kv.RateLevelCrvfitRange(2)));
crvfitRange = (kv.dBRange(indLow : indHigh));
[a, ~] = polyfit(crvfitRange, data(indLow : indHigh)',1);
RateLevelSlope(bin) = a(1);
end
mappingData.RateLevelPerBin = RateLevelPerBin;
mappingData.ILDcentFreq = ILDcentFreq;
mappingData.ILD = ILD;
mappingData.IldAngSlope = IldAngSlope;
mappingData.RateLevelSlope = RateLevelSlope;
end
%% Response Difference AN model
function mappingData = computeResponseDiffMapping(mappingData,kv)
%Initialize variables
ResponseDiffSlope = zeros(1,numel(kv.binPos));
SpkDiffPerAzi = zeros(numel(kv.binPos),numel(kv.azis));
for bin = 1 : numel(kv.binPos)
%Bin AN Response Diff Data
data1 = mean(mappingData.calSpikeDiffPerNeuronPerAzi,3);
data1 = mean(data1(:,kv.binPosInd(bin,:)),2);
SpkDiffPerAzi(bin,:) = data1;
%Compute linear approximation of response diff data
%(includes mirroring of data to negative azimuth and
%setting middle to 0)
[~, ind] = min(abs(kv.azis - kv.AziCrvfitRange));
crvfitRange = (-kv.azis(ind) : 5 : kv.azis(ind));
data1 = data1(1 : ind); data1(1) = 0;
data2 = flipud(data1); data = [-data2;data1(2:end)];
[a, ~] = polyfit(crvfitRange, data',1);
ResponseDiffSlope(bin) = a(1);
end
mappingData.SpkDiffPerAzi = SpkDiffPerAzi;
mappingData.ResponseDiffSlope= ResponseDiffSlope;
end
%% Probabilistic Model
function predictions = computeMaxLikelihood(mappingData, SpkDiffPerBin, kv)
predictions = zeros(1,size(SpkDiffPerBin,2));
for frame = 1 : size(SpkDiffPerBin,2)
predictionsT = zeros(1,size(mappingData.Avg,1));
for ang = 1 : size(mappingData.Avg,1)
MU = mappingData.Avg(ang,:);
SIGMA = mappingData.covariance(ang,:);
data = SpkDiffPerBin(:,frame);
data = data';
[prob] = mvnpdf(data,MU,SIGMA);
predictionsT(ang) = prob;
end
[~, indA] = max(predictionsT);
predictions(frame) = kv.azis(indA);
end
end