function prob = may2011_classifygmm(featSpace,speaker,mask)
%MAY2011_CLASSIFYGMM gaussian mixture model
%
% Usage: prob = may2011_classifygmm(featSpace,speaker,mask)
%
% Input parameters:
% featSpace : feature space to be used
% speaker : speaker IDs, corresponds to number of classes used
% mask : missing data mask
%
% Output parameters:
% prob : probabilistic output of the GMM
%
%
% MAY2011_CLASSIFYGMM calculates a gaussian mixture model
%
% Url: http://amtoolbox.org/amt-1.4.0/doc/modelstages/may2011_classifygmm.php
% #StatusDoc: Good
% #StatusCode: Good
% #Verification: Unknown
% #Requirements: MATLAB M-Signal
% #Author: Tobias May (2014)
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
% Developed with Matlab 7.8.0.347 (R2009a).
%
% Author : Tobias May, 2009
% TUe Eindhoven and Philips Research
% t.may@tue.nl tobias.may@philips.com
%
% History :
% v.1.0 2009/08/6
%% *********************** CHECK INPUT ARGUMENTS ************************
%
%
% Check for proper input arguments
if nargin < 2 || nargin > 3
help(mfilename);
error('Wrong number of input arguments!');
end
% Check if missing data should be used
if nargin < 3 || isempty(mask);
bMissingData = false;
else
bMissingData = true;
end
% Initialization
nClasses = length(speaker);
prob = zeros(size(featSpace,1),nClasses);
%% *********************** PERFORM CLASSIFICATION ***********************
%
%
if bMissingData
% Loop over number of classes
for jj = 1 : nClasses
% Missing data classification
prob(:,jj) = marginalize(featSpace,speaker(jj),mask);
end
else
% Loop over number of classes
for jj = 1 : nClasses
% Conventional recognition using the complete feature space
prob(:,jj) = gmmprob(speaker(jj),featSpace);
end
end
function a = gmmactiv(mix, x)
%GMMACTIV Computes the activations of a Gaussian mixture model.
%
% Description
% This function computes the activations A (i.e. the probability
% P(X|J) of the data conditioned on each component density) for a
% Gaussian mixture model. For the PPCA model, each activation is the
% conditional probability of X given that it is generated by the
% component subspace. The data structure MIX defines the mixture model,
% while the matrix X contains the data vectors. Each row of X
% represents a single vector.
%
% See also
% GMM, GMMPOST, GMMPROB
%
% Copyright (c) Ian T Nabney (1996-2001)
% Check that inputs are consistent
errstring = consist(mix, 'gmm', x);
if ~isempty(errstring)
error(errstring);
end
ndata = size(x, 1);
a = zeros(ndata, mix.ncentres); % Preallocate matrix
switch mix.covar_type
case 'spherical'
% Calculate squared norm matrix, of dimension (ndata, ncentres)
n2 = dist2(x, mix.centres);
% Calculate width factors
wi2 = ones(ndata, 1) * (2 .* mix.covars);
normal = (pi .* wi2) .^ (mix.nin/2);
% Now compute the activations
a = exp(-(n2./wi2))./ normal;
case 'diag'
normal = (2*pi)^(mix.nin/2);
s = prod(sqrt(mix.covars), 2);
for j = 1:mix.ncentres
diffs = x - (ones(ndata, 1) * mix.centres(j, :));
a(:, j) = exp(-0.5*sum((diffs.*diffs)./(ones(ndata, 1) * ...
mix.covars(j, :)), 2)) ./ (normal*s(j));
end
case 'full'
normal = (2*pi)^(mix.nin/2);
for j = 1:mix.ncentres
diffs = x - (ones(ndata, 1) * mix.centres(j, :));
% Use Cholesky decomposition of covariance matrix to speed computation
c = chol(mix.covars(:, :, j));
temp = diffs/c;
a(:, j) = exp(-0.5*sum(temp.*temp, 2))./(normal*prod(diag(c)));
end
case 'ppca'
log_normal = mix.nin*log(2*pi);
d2 = zeros(ndata, mix.ncentres);
logZ = zeros(1, mix.ncentres);
for i = 1:mix.ncentres
k = 1 - mix.covars(i)./mix.lambda(i, :);
logZ(i) = log_normal + mix.nin*log(mix.covars(i)) - ...
sum(log(1 - k));
diffs = x - ones(ndata, 1)*mix.centres(i, :);
proj = diffs*mix.U(:, :, i);
d2(:,i) = (sum(diffs.*diffs, 2) - ...
sum((proj.*(ones(ndata, 1)*k)).*proj, 2)) / ...
mix.covars(i);
end
a = exp(-0.5*(d2 + ones(ndata, 1)*logZ));
otherwise
error(['Unknown covariance type ', mix.covar_type]);
end
function prob = gmmprob(mix, x)
%GMMPROB Computes the data probability for a Gaussian mixture model.
%
% Description
% This function computes the unconditional data density P(X) for a
% Gaussian mixture model. The data structure MIX defines the mixture
% model, while the matrix X contains the data vectors. Each row of X
% represents a single vector.
%
% See also
% GMM, GMMPOST, GMMACTIV
%
% Copyright (c) Ian T Nabney (1996-2001)
% Check that inputs are consistent
errstring = consist(mix, 'gmm', x);
if ~isempty(errstring)
error(errstring);
end
% Compute activations
a = gmmactiv(mix, x);
% Form dot product with priors
prob = a * (mix.priors)';
function errstring = consist(model, type, inputs, outputs)
%CONSIST Check that arguments are consistent.
%
% Description
%
% ERRSTRING = CONSIST(NET, TYPE, INPUTS) takes a network data structure
% NET together with a string TYPE containing the correct network type,
% a matrix INPUTS of input vectors and checks that the data structure
% is consistent with the other arguments. An empty string is returned
% if there is no error, otherwise the string contains the relevant
% error message. If the TYPE string is empty, then any type of network
% is allowed.
%
% ERRSTRING = CONSIST(NET, TYPE) takes a network data structure NET
% together with a string TYPE containing the correct network type, and
% checks that the two types match.
%
% ERRSTRING = CONSIST(NET, TYPE, INPUTS, OUTPUTS) also checks that the
% network has the correct number of outputs, and that the number of
% patterns in the INPUTS and OUTPUTS is the same. The fields in NET
% that are used are
% type
% nin
% nout
%
% See also
% MLPFWD
%
% Copyright (c) Ian T Nabney (1996-2001)
% Assume that all is OK as default
errstring = '';
% If type string is not empty
if ~isempty(type)
% First check that model has type field
if ~isfield(model, 'type')
errstring = 'Data structure does not contain type field';
return
end
% Check that model has the correct type
s = model.type;
if ~strcmp(s, type)
errstring = ['Model type ''', s, ''' does not match expected type ''',...
type, ''''];
return
end
end
% If inputs are present, check that they have correct dimension
if nargin > 2
if ~isfield(model, 'nin')
errstring = 'Data structure does not contain nin field';
return
end
data_nin = size(inputs, 2);
if model.nin ~= data_nin
errstring = ['Dimension of inputs ', num2str(data_nin), ...
' does not match number of model inputs ', num2str(model.nin)];
return
end
end
% If outputs are present, check that they have correct dimension
if nargin > 3
if ~isfield(model, 'nout')
errstring = 'Data structure does not conatin nout field';
return
end
data_nout = size(outputs, 2);
if model.nout ~= data_nout
errstring = ['Dimension of outputs ', num2str(data_nout), ...
' does not match number of model outputs ', num2str(model.nout)];
return
end
% Also check that number of data points in inputs and outputs is the same
num_in = size(inputs, 1);
num_out = size(outputs, 1);
if num_in ~= num_out
errstring = ['Number of input patterns ', num2str(num_in), ...
' does not match number of output patterns ', num2str(num_out)];
return
end
end
% ***********************************************************************
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% ***********************************************************************