This documentation page applies to an outdated AMT version (1.4.0). Click here for the most recent page.
function [template, target] = mclachlan2021_preproc(SOFAtemplate, varargin)
%MCLACHLAN2021_PREPROC - extract HRTF using gammatone frequency bands and ITDs from SOFA object
% Usage: [template, target] = mclachlan2021_preproc(SOFAobj)
%
% Input parameters:
% SOFAtemplate: Struct in SOFA format with HRTFs
%
% Output parameters:
% template : template struct with spectral components
% target : template struct with spectral components
%
% MCLACHLAN2021_PREPROC(...) computes temporally integrated
% spectral magnitude profiles and itd.
%
% MCLACHLAN2021_PREPROC accepts the following optional parameters:
%
% 'source_ir',source_ir Set the sound source's impulse reponse.
% Default value a broadband sound source
% with 0dB amplitude.
%
% 'fb_ch',fb_ch Set the number of channels for the gammatone
% filterbank to fb_ch.
% Default value is 30.
%
% 'fb_low',fb_low Set the lowest frequency in the filterbank to
% fb_low. Default value is 300 Hz.
%
% 'fb_high',fb_high Set the highest frequency in the filterbank to
% fhigh. Default value is 15000 Hz.
%
% 'SNR',SNR Set the signal to noise ratio corresponding to
% different sound source intensities.
% Default value is SNR = 75 [dB]
%
% 'targ_az',targ_az Set the azimuth of a set of sound sources
% to targ_el. It can be a scalar or a column vector
% Default value is []: all target azimuths are
% used. Must have the same size of targ_el.
%
% 'targ_el',targ_el Set the elevation of a set of sound sources
% to targ_el. It can be a scalar or a column vector
% Default value is []: all target elevations are
% used. Must have the same size of targ_az.
%
% See also: exp_reijniers2014 reijniers2014
%
% Url: http://amtoolbox.org/amt-1.4.0/doc/modelstages/mclachlan2021_preproc.php
% #StatusDoc: Perfect
% #StatusCode: Perfect
% #Verification: Unknown
% #Requirements: M-Signal M-Image
% #Author: Glen McLachlan (2021)
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
% References:
% R. Barumerli, P. Majdak, R. Baumgartner, J. Reijniers, M. Geronazzo,
% and F. Avanzini. Predicting directional sound-localization of human
% listeners in both horizontal and vertical dimensions. In Audio
% Engineering Society Convention 148. Audio Engineering Society, 2020.
%
% R. Barumerli, P. Majdak, R. Baumgartner, M. Geronazzo, and F. Avanzini.
% Evaluation of a human sound localization model based on bayesian
% inference. In Forum Acusticum, 2020.
%
% J. Reijniers, D. Vanderleist, C. Jin, C. S., and H. Peremans. An
% ideal-observer model of human sound localization. Biological
% Cybernetics, 108:169--181, 2014.
% AUTHOR: Michael Sattler and Roberto Barumerli (adapted from code provided by Jonas Reijniers)
definput.import={'amt_cache'};
definput.import={'mclachlan2021'};
[~, kv] = ltfatarghelper({}, definput, varargin);
fs = SOFAtemplate.Data.SamplingRate; % sampling rate
ir_pad = 0.05*fs; % 50ms pad
% Get directions from SOFA file
SOFAcoords_sph = SOFAcalculateAPV(SOFAtemplate);
% assume position on a sphere with radius of 1 meter
SOFAcoords_sph(:, 3) = 1;
% convert polar (radians) to cartesian
SOFAcoords_crt = zeros(size(SOFAtemplate.SourcePosition));
[SOFAcoords_crt(:,1), SOFAcoords_crt(:,2), SOFAcoords_crt(:,3)] = ...
sph2cart(SOFAcoords_sph(:,1)*pi/180,SOFAcoords_sph(:,2)*pi/180,SOFAcoords_sph(:,3));
%% S computation
if isequal(kv.source_ir, 0)
S = zeros(kv.fb_ch, 1);
else
% if S is not the default value compute its spectrum
% pad to account for longer filters in the filterbank
kv.source_ir = padarray(kv.source_ir(:), ...
[abs(ir_pad - length(kv.source_ir)) 0],'post');
S = 2*real(ufilterbankz(bgt,agt,kv.source_ir));
% Averaging over time (RMS)
S = 20*log10(squeeze(rms(S, 'dim', 1))+eps);
end
%% sample uniformly over sphere with N is number of directions
% contains the sampled points on a unitary sphere in cartesian coords
%dirs=amt_load('reijniers2014','dirs.mat');
dangle = 1;
UNIcoords=amt_load('mclachlan2021', 'dirs_2000.mat');
UNIcoords=UNIcoords.dirs;
if(isempty(UNIcoords))
error('New directions grid not available. Please check your internet connection!')
end
% remove the points from the unitary sphere below original HRTF lowest elevation
idx = find(UNIcoords(:,3) > min(SOFAcoords_crt(:, 3)));
UNIcoords = UNIcoords(idx,:);
num_dirs = length(idx);
% create 1 degree (yaw) rotated over coordinates (for dITD)
UNIcoords_rot = mclachlan2021_rotatedirs(UNIcoords,dangle,kv.rot_type);
%% ITD computation
% do alignment as was performed by Katz 2014
%template_itd = itdestimator(SOFAtemplate,'Threshold', 'lp', ...
% 'upper_cutfreq', 3000, 'butterpoly', 10, 'threshlvl', -10, 'silent');
template_itd = itdestimator(SOFAtemplate,'Threshold', 'lp', ...
'upper_cutfreq', 3000, 'butterpoly', 10, 'threshlvl', -10);
%lat=pi/2-acos(SOFAcoords_crt(:,2));
%pol=sign(SOFAcoords_crt(:,3)).*acos(SOFAcoords_crt(:,1)./(cos(lat)));
%template_itd = woodworth(lat,pol);
%transformation to JND
a = 32.5e-6;
b = 0.095;
template_itd = sign(template_itd) .* ((log(a + b * abs(template_itd)) - log(a)) / b);
%% Pad HRIR vector
time_idx = find(SOFAtemplate.API.Dimensions.Data.IR == 'N');
dir_idx = find(SOFAtemplate.API.Dimensions.Data.IR == 'M');
ear_idx = find(SOFAtemplate.API.Dimensions.Data.IR == 'R');
% permute in order to use ufilterbankz
hrir = permute(double(SOFAtemplate.Data.IR),[time_idx, dir_idx, ear_idx]);
% pad to account for longer filters in the filterbank
pad_mat = zeros(ir_pad - SOFAtemplate.API.('N'), SOFAtemplate.API.('M'), SOFAtemplate.API.('R'));
hrir = cat(1, hrir, pad_mat);
%% Gammatone filterbank
fc = fc_ERB(kv.fb_ch, kv.fb_low, kv.fb_high);
% if the number of channels exceed the fb_high
% the vector will be shorter than kv.fb_ch
kv.fb_ch = length(fc);
[bgt,agt] = gammatone(fc,fs,'complex');
%% H_L and H_R generation
template_hrtf = 2*real(ufilterbankz(bgt,agt,hrir(:,:)));
hrtf_size = size(hrir);
template_hrtf = reshape(template_hrtf,[hrtf_size(1),kv.fb_ch,hrtf_size(2),hrtf_size(3)]);
clear hrir
% Averaging over time (RMS)
template_hrtf = 20*log10(squeeze(rms(template_hrtf, 'dim', 1))+eps); % in dB
% normalize
template_hrtf = template_hrtf - max(template_hrtf(:));
% add source spectrum to target and to template
template_hrtf = template_hrtf + repmat(S(:), 1, size(template_hrtf, 2), 2);
% SHOULD TEMPLATE INCLUDE SOUND SOURCE SPECTRUM?
SNR = kv.SNR; % defined as maximal SNR (in interval 2kHz-7kHz)
% account for SNR and frequency-dependent hearing sensitivity (see section 2.1 in SI)
template_hrtf = max(template_hrtf ,-SNR);
template_hrtf(fc<=2000,:,:) = max(template_hrtf(fc<=2000,:,:),-SNR + 10);
template_hrtf(fc>=7000,:,:) = max(template_hrtf(fc>=7000,:,:),-SNR + 20);
%% interpolate to uniform distribution
%spherical harmonics basis functions
Y_N = local_SH(kv.SHorder, [SOFAcoords_sph(:,1)*pi/180, SOFAcoords_sph(:,2)*pi/180]);
% tikonov regularisation
lambda = 4;
SIG = eye((kv.SHorder+1)^2);
SIG(1:(2+1)^2,1:(2+1)^2) = 0;
%expansion coefficients
expcoef_H(:,:,1) = transpose((Y_N'*Y_N+lambda*SIG)\Y_N'*squeeze(template_hrtf(:,:,1))');
expcoef_H(:,:,2) = transpose((Y_N'*Y_N+lambda*SIG)\Y_N'*squeeze(template_hrtf(:,:,2))');
expcoef_itd = (Y_N'*Y_N+lambda*SIG)\Y_N'*template_itd;
% interpolate itd values to original coords
[AZ,EL] = cart2sph(UNIcoords(:,1),UNIcoords(:,2),UNIcoords(:,3));
Y_N = local_SH(kv.SHorder, [AZ EL]);
template_itd = (Y_N*expcoef_itd)';
template_hrtf = []; % clear and replace hrtfs to uniform grid
template_hrtf(:,:,1) = transpose(Y_N*squeeze(expcoef_H(:,:,1))');
template_hrtf(:,:,2) = transpose(Y_N*squeeze(expcoef_H(:,:,2))');
%% dITD computation
% interpolate itd values to rotated coords
[AZ,EL] = cart2sph(UNIcoords_rot(:,1),UNIcoords_rot(:,2),UNIcoords_rot(:,3));
Y_N = local_SH(kv.SHorder, [AZ EL]);
template_itdt = (Y_N*expcoef_itd)';
%compute dITD
template_ditd = (template_itdt-template_itd);
%dITD expansion coefficient
[AZ,EL] = cart2sph(UNIcoords(:,1),UNIcoords(:,2),UNIcoords(:,3));
Y_N = local_SH(kv.SHorder, [AZ EL]); %SH basis functions
expcoef_ditd = (Y_N'*Y_N+lambda*SIG)\Y_N'*template_ditd';
%plot the dITD values in JND per degree (take at SHorder 5)
%plot_reijniers2014(target.coords,(target.itdt-target.itd0)*1e6);
%caxis([-10 10]);
%% create struct
template.fs = fs;
template.fc = fc;
template.itd = template_itd;
template.ditd = template_ditd;
template.coef.itd = expcoef_itd;
template.coef.ditd = expcoef_ditd;
template.coef.H = expcoef_H;
template.H = template_hrtf;
template.coords = UNIcoords;
% if target required
if nargout > 1
% target computation
if(~isempty(kv.targ_az) || ~isempty(kv.targ_el))
assert(numel(kv.targ_az)==numel(kv.targ_el))
% interpolate to target coordinates
Y_N = local_SH(kv.SHorder, [kv.targ_az*pi/180 kv.targ_el*pi/180]);
target_itd = (Y_N*expcoef_itd)';
target_ditd = (Y_N*expcoef_ditd)';
target_hrtf(:,:,1) = transpose(Y_N*squeeze(expcoef_H(:,:,1))');
target_hrtf(:,:,2) = transpose(Y_N*squeeze(expcoef_H(:,:,2))');
[target_coords(:,1), target_coords(:,2), target_coords(:,3)] = ...
sph2cart(kv.targ_az*pi/180,kv.targ_el*pi/180,ones(length(kv.targ_az),1));
else % if no targets given, equal all template coordinates
target_hrtf = template_hrtf;
target_itd = template_itd;
target_ditd = template_ditd;
target_coords = UNIcoords;
end
target.fs = fs;
target.fc = fc;
target.itd = target_itd;
target.ditd = target_ditd;
target.S = S;
target.H = target_hrtf;
target.coords = target_coords;
end
end
function fc = fc_ERB(n_channels, freq_start, freq_end)
% ERB computation according to Moore and Glasberg 1983
c = 1;
fc = zeros(n_channels, 1);
fc(1) = freq_start;
while (c < n_channels)
c =c + 1;
fc(c) = fc(c-1) + 6.23 * (fc(c-1)/1000)^2 + 93.39 * (fc(c-1)/1000) + 28.52;
end
fc(fc > freq_end) = [];
end
function Y_N = local_SH(N, dirs)
% calculate spherical harmonics up to order N for directions dirs [azi ele;...] (in radiant)
%
N_dirs = size(dirs, 1);
N_SH = (N+1)^2;
dirs(:,2) = pi/2 - dirs(:,2); % convert to inclinations
Y_N = zeros(N_SH, N_dirs);
% n = 0
Lnm = legendre(0, cos(dirs(:,2)'));
Nnm = sqrt(1./(4*pi)) * ones(1,N_dirs);
CosSin = zeros(1,N_dirs);
CosSin(1,:) = ones(1,size(dirs,1));
Y_N(1, :) = Nnm .* Lnm .* CosSin;
% n > 0
idx = 1;
for n=1:N
m = (0:n)';
Lnm = legendre(n, cos(dirs(:,2)'));
condon = (-1).^[m(end:-1:2);m] * ones(1,N_dirs);
Lnm = condon .* [Lnm(end:-1:2, :); Lnm];
mag = sqrt( (2*n+1)*factorial(n-m) ./ (4*pi*factorial(n+m)) );
Nnm = mag * ones(1,N_dirs);
Nnm = [Nnm(end:-1:2, :); Nnm];
CosSin = zeros(2*n+1,N_dirs);
% m=0
CosSin(n+1,:) = ones(1,size(dirs,1));
% m>0
CosSin(m(2:end)+n+1,:) = sqrt(2)*cos(m(2:end)*dirs(:,1)');
% m<0
CosSin(-m(end:-1:2)+n+1,:) = sqrt(2)*sin(m(end:-1:2)*dirs(:,1)');
Ynm = Nnm .* Lnm .* CosSin;
Y_N(idx+1:idx+(2*n+1), :) = Ynm;
idx = idx + 2*n+1;
end
Y_N = Y_N.';
end