THE AUDITORY MODELING TOOLBOX

This documentation page applies to an outdated AMT version (1.5.0). Click here for the most recent page.

View the code

Go to function

LAVANDIER2022 - Compute the binaural 'effective' target-to-interferer ratio

Usage:

[twoears_benefit, weighted_bmld, weighted_better_ear] = lavandier2022(target_in,int_in,fs)

Input parameters:

target_in target
int_in interferer
fs sampling frequency [Hz]

Output parameters:

twoears_benefit effective target to interferer ratio
weighted_bmld weighted binaural masking level difference
weighted_better_ear
 weighted better ear advantage

Description:

lavandier2022 computes the binaural 'effective' target-to-interferer ratio. target_in and int_in are signals produced at the ears: stereo files (2-column matrices) of the same sampling frequency fs

References:

M. Lavandier, T. Vicente, and L. Prud'homme. A series of snr-based speech intelligibility models in the auditory modeling toolbox. Acta Acustica, 2022.

M. Lavandier, S. Jelfs, J. Culling, A. Watkins, A. Raimond, and S. Makin. Binaural prediction of speech intelligibility in reverberant rooms with multiple noise sources. J. Acoust. Soc. Am., 131(1):218--231, 2012. [ http ]

M. Lavandier and J. Culling. Speech segregation in rooms: Monaural, binaural and interacting effects of reverberation on target and interferer. J. Acoust. Soc. Am., 123(4):2237--2248, 2008. [ http ]

S. Jelfs, J. Culling, and M. Lavandier. Revision and validation of a binaural model for speech intelligibility in noise. Hearing Research, 2011.