THE AUDITORY MODELING TOOLBOX

This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).

View the help

Go to function

DATA_BAUMGARTNER2016 - Data from Baumgartner et al. (2016)

Program code:

function data = data_baumgartner2016(varargin)
%DATA_BAUMGARTNER2016  Data from Baumgartner et al. (2016)
%   Usage: data = data_baumgartner2016(flag)
%
%   Input parameters:
%
%   Output parameters:
%     data : data structure contains the following fields:
%
%            .id         listener ID
%
%            .S          listener-specific sensitivity parameter
%
%            .mrs        listener-specific task-induced response scatter (derived
%                        from central lateral response precision in baseline condition)
%
%            .Obj        DTF data in SOFA Format
%
%            .pe_exp     experimental local polar RMS error
%
%            .qe_exp     experimental quadrant error rate
%
%            .target     experimental target angles
%
%            .response   experimental response angles
%
%            .itemlist   experimental item list. Columns denote:
%                        1:4 ... azi_target,ele_target,azi_response,ele_response
%                        5:8 ... lat_target,pol_target,lat_response,pol_response
%                        9   ... F/B-Confusion resolved pol_response
%
%          If the 'model'-falg is set the output contains also the following fields
%
%            .S          listener-specific sensitivity parameter.
%
%            .Obj        DTF data in SOFA Format.
%
%            .pe_exp     experimental local polar RMS error in baseline condition.
%
%            .qe_exp     experimental quadrant error rate in baseline condition.
%
%            .target     experimental target angles.
%
%            .response   experimental response angles.
%
%            .stim       target stimulus.
%
%            .fsstim     sampling rate of target stimulus.
%
%   DATA_BAUMGARTNER2016(flag) returns data from Baumgartner et al. (2016)
%   describing a model for sound localization in sagittal planes (SPs)
%   on the basis of listener-specific directional transfer functions (DTFs).
%
%   DATA_BAUMGARTNER2016 accepts the following flags:
%
%     'baumgartner2014' data of the pool from Baumgartner et al. (2014). This is the default.
%     'Long'            300ms at 50+-5dB SL.
%     '10dB'            3ms at 10+-5dB SL.
%     '20dB'            3ms at 20+-5dB SL.
%     '30dB'            3ms at 30+-5dB SL.
%     '40dB'            3ms at 40+-5dB SL.
%     '50dB'            3ms at 50+-5dB SL.
%     '60dB'            3ms at 60+-5dB SL.
%     '70dB'            3ms at 70+-5dB SL.
%     'all'             All conditions stated above. Itemlists in cell array.
%     'ConditionNames'  To receive cell array with all condition names.
%
%     'model'     DTFs, sensitivities and test stimuli necessary for model 
%     	          predictions. Sensitivity paramters will be calibrated if
%     	          calibration data does not exist or does not match the
%     	          current setting of baumgartner2016.
%
%
%   Requirements: 
%   -------------
%
%   1) SOFA API from http://sourceforge.net/projects/sofacoustics for Matlab (in e.g. thirdparty/SOFA)
% 
%   2) Data in hrtf/baumgartner2014 and hrtf/baumgartner2016
%
%   3) Data in auxdata/baumgartner2016
%
%   Examples:
%   ---------
%
%   To get all listener-specific data of the pool from Baumgartner et al. (2014), use:
%
%     data_baumgartner2016;
%
%   To get all listener-specific data of the LocaLevel study, use:
%
%     data_baumgartner2016('Long');
%
%   See also: baumgartner2016, exp_baumgartner2016
%
%   Url: http://amtoolbox.sourceforge.net/amt-0.10.0/doc/data/data_baumgartner2016.php

% Copyright (C) 2009-2020 Piotr Majdak and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 0.10.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program.  If not, see <http://www.gnu.org/licenses/>.

% AUTHOR : Robert Baumgartner

% TODO: explain Data in description;

%% ------ Check input options --------------------------------------------

definput.import={'baumgartner2016'};
definput.flags.condition = {'baumgartner2014';'Long';'10dB';'20dB';'30dB';'40dB';'50dB';'60dB';'70dB';'all'};
definput.flags.conditionNames = {'';'ConditionNames'};
definput.flags.modeldata = {'','model'};

% Parse input options
[flags,kv]  = ltfatarghelper({},definput,varargin);

if flags.do_recalib
  flags.cachemode = 'redo';
else
  flags.cachemode = 'normal';
end
  
%% Output Only Condition Names of LocaLevel
if flags.do_ConditionNames
  data = definput.flags.condition(2:end-1);
  return
end

%% Listener pool (listener-specific SP-DTFs) from Baumgartner et al. (2014)
if flags.do_baumgartner2014  
  listeners = {'NH12';'NH15';'NH21';'NH22';'NH33';'NH39';'NH41';'NH42';... % NumChan
               'NH43';'NH46';'NH53';'NH55';'NH58';'NH62';'NH64';'NH68';...
               'NH71';'NH72';'NH14';'NH16';'NH17';'NH18';'NH57';...
               };
  data=cell2struct(listeners,'id',2);

  for ii = 1:length(data)

    data(ii).S = 0.5; % default sensitivity

    filename = fullfile(SOFAdbPath,'baumgartner2014',...
      ['ARI_' data(ii).id '_hrtf_M_dtf 256.sofa']);

    data(ii).Obj = SOFAload(filename);
    data(ii).fs = data(ii).Obj.Data.SamplingRate;

  end

  data = loadBaselineData(data,kv.latseg,kv.dlat);

  %% prior distribution
  data = addpriordist(data);

  %% Calibration of S

  if flags.do_SPLtemAdapt
    kv.SPLtem = kv.SPL;
  end

  %%% Define cache name according to settings for auditory periphery model
  cachename = ['calibration_g' num2str(kv.gamma,'%u') ...
      '_mrs' num2str(kv.mrsmsp,'%u') ...
      '_do' num2str(kv.do,'%u') ...
      '_tar' num2str(kv.SPL,'%u') 'dB_tem' num2str(kv.SPLtem,'%u') 'dB_'...
      flags.fbank];
  if flags.do_gammatone
    cachename = [cachename '_'  num2str(1/kv.space,'%u') 'bpERB'];
    if flags.do_middleear; cachename = [cachename '_middleear']; end
    if flags.do_ihc; cachename = [cachename '_ihc']; end
  else % zilany
    cachename = [cachename '_' flags.fibertypeseparation];
  end
  if kv.prior > 0 
    cachename = [cachename '_prior' num2str(kv.prior,'%u')];
  end
  if kv.tiwin < 0.5
    cachename = [cachename '_tiwin' num2str(kv.tiwin*1e3) 'ms']; 
  end
  cachename = [cachename '_mgs' num2str(kv.mgs)]; 

  c = amt_cache('get',cachename,flags.cachemode);
  if isempty(c) %|| not(isequal(c.kv,kv))

    % reset listener-specific MRS to default
    for ii = 1:length(data)
      data(ii).mrs = kv.mrsmsp;
    end

    amt_disp('Calibration procedure started. Please wait!','progress')
    data = baumgartner2016_calibration(data,'argimport',flags,kv);

    c.data = rmfield(data,{'Obj','fs','itemlist','target','response'}); % reduce filesize
    c.kv = kv;
    amt_cache('set',cachename,c)

  else

    for ss = 1:length(data)
      for ii = 1:length(c.data)
        if strcmp(data(ss).id,c.data(ii).id)
          data(ss).S = c.data(ii).S;
          data(ss).mrs = c.data(ii).mrs;
          if isfield(c.data,'prior')
            data(ss).prior = c.data(ii).prior;
          else
            data(ss).prior = kv.prior;
          end
        end
      end
    end

  end 
  
else % Loca Level
  
  %% Extract localization data

  d = amt_load('baumgartner2016','data.mat');

  if flags.do_all

    for ll = 1:length(d.subject)

      data(ll).condition = d.condition;
      data(ll).id = d.subject(ll).id;

      data(ll).SL = [50,10:10:70];
      data(ll).SPL = data(ll).SL + d.subject(ll).SPLtoSLoffset;
      data(ll).SPL(2:end) = data(ll).SPL(2:end) + d.subject(ll).LongToShortOffset;

      for C = 1:length(d.condition)

        data(ll).itemlist{C} = real(d.subject(ll).expData{C}(:,1:8));
        data(ll).pe_exp(C) = localizationerror(data(ll).itemlist{C},'rmsPmedianlocal');
        data(ll).qe_exp(C) = localizationerror(data(ll).itemlist{C},'querrMiddlebrooks');

      end
    end

  else

    C = find(ismember(d.condition,flags.condition));

    for ll = 1:length(d.subject)

      data(ll).itemlist = real(d.subject(ll).expData{C}(:,1:8));
      data(ll).id = d.subject(ll).id;
      if flags.do_Long
        data(ll).SL = 50;
        data(ll).SPL = data(ll).SL + d.subject(ll).SPLtoSLoffset;
      else % Short
        data(ll).SL = str2num(flags.condition(1:2));
        data(ll).SPL = data(ll).SL + d.subject(ll).SPLtoSLoffset + d.subject(ll).LongToShortOffset;
      end

      data(ll).pe_exp = localizationerror(data(ll).itemlist,'rmsPmedianlocal');
      data(ll).qe_exp = localizationerror(data(ll).itemlist,'querrMiddlebrooks');

    end

  end


  %% Listener-specific SP-DTFs
  if flags.do_model

      for ii = 1:length(data)

        filename = fullfile(SOFAdbPath,'baumgartner2016',...
          ['ARI_' data(ii).id '_hrtf_M_dtf 256.sofa']);

        data(ii).Obj = SOFAload(filename);
        data(ii).fs = data(ii).Obj.Data.SamplingRate;

        if flags.do_Long
          data(ii).stim = d.subject(ii).stim.long;
        else % short
          data(ii).stim = d.subject(ii).stim.short;
        end
        data(ii).fsstim = d.subject(ii).stim.fs;

      end

      %% prior districution
      data = addpriordist(data);

      %% Calibration of S
 
      if flags.do_SPLtemAdapt
        kv.SPLtem = kv.SPL;
      end
      
      cachename = ['calibration_localevel_g' num2str(kv.gamma,'%u') ...
          '_mrs' num2str(kv.mrsmsp,'%u') ...
          '_do' num2str(kv.do,'%u') ...
          '_tar' num2str(kv.SPL,'%u') 'dB_tem' num2str(kv.SPLtem,'%u') 'dB_'...
          flags.fbank];
      if flags.do_gammatone
        cachename = [cachename '_'  num2str(1/kv.space,'%u') 'bpERB'];
        if flags.do_middleear; cachename = [cachename '_middleear']; end
        if flags.do_ihc; cachename = [cachename '_ihc']; end
      else % zilany
        cachename = [cachename '_' flags.fibertypeseparation];
      end
      if kv.prior > 0 
        cachename = [cachename '_prior' num2str(kv.prior,'%u')];
      end
      if kv.tiwin < 0.5
        cachename = [cachename '_tiwin' num2str(kv.tiwin*1e3) 'ms']; 
      end

      c = amt_cache('get',cachename,flags.cachemode);
      if isempty(c) %|| not(isequal(c.kv,kv))

        c.SL = 50; % dB SL of targets
        c.SPL = c.SL + [d.subject.SPLtoSLoffset];
        for ii = 1:length(data)
          c.stim{ii} = d.subject(ii).stim.long;
        end

        %% Baseline data for calibration
        baseline = data_baumgartner2016('Long');

        for ll = 1:length(data)  

          data(ll).pe_exp = localizationerror(baseline(ll).itemlist,'rmsPmedianlocal'); % s(ll).baseline.pe_exp
          data(ll).qe_exp = localizationerror(baseline(ll).itemlist,'querrMiddlebrooks'); % s(ll).baseline.qe_exp
          data(ll).mrs = localizationerror(data(ll).itemlist,'precLcentral');

          for ii = 1:length(kv.latseg)

            latresp = baseline(ll).itemlist(:,7);
            idlat = latresp <= kv.latseg(ii)+kv.dlat & latresp > kv.latseg(ii)-kv.dlat;
            mm2 = baseline(ll).itemlist(idlat,:);

            data(ll).target{ii} = mm2(:,6); % polar angle of target
            data(ll).response{ii} = mm2(:,8); % polar angle of response
            data(ll).Nt{ii} = length(data(ll).target{ii});

          end

        end
        %%

        % reset listener-specific MRS to default
        for ii = 1:length(data)
          data(ii).mrs = kv.mrsmsp;
        end

        amt_disp('Calibration procedure started. Please wait!','progress')
        data = baumgartner2016_calibration(data,'argimport',flags,kv,'c',c);

        c.data = rmfield(data,{'Obj','fs','itemlist','target','response'}); % reduce filesize
        c.kv = kv;
        amt_cache('set',cachename,c)

      else

        for ii = 1:length(data)
          idx = find(ismember({c.data.id},data(ii).id));
          data(ii).S = c.data(idx).S;
        end

      end

  end

end
end


function s = loadBaselineData(s,latseg,dlat)

  % latseg = 0;%[-20,0,20]; 
  % dlat = 30;%10;

  % Experimental baseline data
  numchan = data_goupell2010('BB');
  methods = data_majdak2010('Learn_M');
  spatstrat = data_majdak2013('BB');
  ctcL = data_majdak2013ctc('Learn');

  for ll = 1:length(s)

    s(ll).itemlist = [];

    s(ll).itemlist = [s(ll).itemlist ; numchan(ismember({numchan.id},s(ll).id)).mtx];
    s(ll).itemlist = [s(ll).itemlist ; methods(ismember({methods.id},s(ll).id)).mtx];
    s(ll).itemlist = [s(ll).itemlist ; spatstrat(ismember({spatstrat.id},s(ll).id)).mtx];
    s(ll).itemlist = [s(ll).itemlist ; ctcL(ismember({ctcL.id},s(ll).id)).mtx];

    s(ll).pe_exp = localizationerror(s(ll).itemlist,'rmsPmedianlocal');
    s(ll).qe_exp = localizationerror(s(ll).itemlist,'querrMiddlebrooks');
    s(ll).mrs = localizationerror(s(ll).itemlist,'precLcentral');

    for ii = 1:length(latseg)

      latresp = s(ll).itemlist(:,7);
      idlat = latresp <= latseg(ii)+dlat & latresp > latseg(ii)-dlat;
      mm2 = s(ll).itemlist(idlat,:);

      s(ll).pe_exp_lat(ii) = localizationerror(mm2,'rmsPmedianlocal');
      s(ll).qe_exp_lat(ii) = localizationerror(mm2,'querrMiddlebrooks');

      s(ll).target{ii} = mm2(:,6); % polar angle of target
      s(ll).response{ii} = mm2(:,8); % polar angle of response
      s(ll).Ntar{ii} = length(s(ll).target{ii});

    end
    
  end
end


function data = addpriordist(data)
  dang = 30; % angular width of segments
  Tmin = 5; % min. # of targets to estimate prior distribution
  edges = -90:dang:270;
  for ii = 1:length(data)
    try
      T = histcounts(data(ii).itemlist(:,6),edges);
      R = histcounts(data(ii).itemlist(:,8),edges);
    catch
      centers = edges(1:end-1)+diff(edges)/2;
      T = hist(data(ii).itemlist(:,6),centers);
      R = hist(data(ii).itemlist(:,8),centers);
    end
    T(T<Tmin) = nan;
    RvT = R./T;
    RvT(isnan(RvT)) = 1;
    data(ii).priordist.y = RvT;
    data(ii).priordist.x = edges(1:end-1)+dang/2;
  end
end