function data = data_hartmann1996(varargin)
%DATA_HARTMANN1996 - Data from Hartmann and Wittenberg (1996)
% Usage: data = data_hartmann1996(condition,f0)
%
% Data from Hartmann and Wittenberg (1996) with interaural cue
% alterations up to a certain harmonic nprime.
%
% The condition flag may be one of:
%
% 'ILD' or 'fig7' ILDs up to nprime set to zero. This is the default.
% 'ISLD' or 'fig8' ISLDs (interaural spectral level differeces) maintained
% while flattening right-ear HRTF up to nprime.
%
% The f0 flag may be one of:
%
% '125' Fundamental frequency of 125 Hz and highest harmonic at 4750 Hz.
% This is the default.
% '250' Fundamental frequency of 250 Hz and highest harmonic at 9500 Hz.
% This option is only available for condition ILD/fig7.
%
% Output parameters:
% data : structure with individual and average data
%
% References:
% W. M. Hartmann and A. Wittenberg. On the externalization of sound
% images. J. Acoust. Soc. Am., 99(6):3678--88, June 1996.
%
%
% Url: http://amtoolbox.sourceforge.net/amt-0.10.0/doc/data/data_hartmann1996.php
% Copyright (C) 2009-2020 Piotr Majdak and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 0.10.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR: Robert Baumgartner, Acoustics Research Institute, Vienna, Austria
definput.flags.f0 = {'125','250'};
definput.flags.expirement = {'ILD','fig7','ISLD','fig8'};
[flags]=ltfatarghelper({},definput,varargin);
%% Actual data
if flags.do_ILD || flags.do_fig7
if flags.do_125
% listeners C
C = [1.0, 3.0; 8.0, 3.0;14, 2.0;19, 2.3; 25, 2.0; 38, 2.0];
% listeners R
R = [ 8.0, 2.7;14, 2.0;19, 1.5;22, 1.0;25, 1.0; 38, 0.50];
% overlap for avg
idC = 2:6;
idR = [1:3,5:6];
elseif flags.do_250
% listeners C
C = [8.0, 2.8; 19, 2.0; 22, 2.0; 25, 1.8; 38, 0.58];
% listeners R
R = [8.0, 2.5;14, 1.9;19, 1.0; 22, 0.88; 25, 0.48;38, 0.38];
% overlap for avg
idC = 1:5;
idR = [1,3:6];
end
data.subj(1).ID = 'C';
data.subj(1).nprime = C(:,1);
data.subj(1).Escore = C(:,2);
data.subj(2).ID = 'R';
data.subj(2).nprime = R(:,1);
data.subj(2).Escore = R(:,2);
data.avg.nprime = data.subj(1).nprime(idC);
data.avg.Escore = mean([data.subj(1).Escore(idC),data.subj(2).Escore(idR)],2);
elseif flags.do_ISLD || flags.do_fig8
ID = {'A','C','R','W'};
indData = {...
[5.0, 2.9;8.0, mean([2.7,0.98]);14, mean([2.5,1.5]);19, 0.38;38, 0.46];... % averaged in case of "split images"
[8.0, 3.0;14, mean([2.9, 0.48]);19, 0.97;25, 1.8;38, 0.96];...
[1.0, mean([3.1, 1.0]);5.0, mean([3.1, 1.0]);8.0, 1.0;19, 1.0;25, 1.7;38, 1.0];...
[5.0, 1.6;8.0, 2.3;19, 1.5;25, 2.0;38, 1.6]};
Ns = length(ID);
for ii = 1:Ns
data.subj(ii).ID = ID{ii};
data.subj(ii).nprime = indData{ii}(:,1);
data.subj(ii).Escore = indData{ii}(:,2);
end
data.avg.nprime = [5;8;19;38];
Escore = nan(length(data.avg.nprime),Ns); % initialize with data form W
for ii = 1:Ns
for ee = 1:length(data.avg.nprime)
id = find(data.subj(ii).nprime == data.avg.nprime(ee));
if isscalar(id)
Escore(ee,ii) = data.subj(ii).Escore(id);
end
end
end
data.avg.Escore = nanmean(Escore,2);
end
end