THE AUDITORY MODELING TOOLBOX

This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).

View the help

Go to function

DEMO_ZILANY2014 - Demo of the Zilany et al., (2014) model

Program code:

%DEMO_ZILANY2014  Demo of the Zilany et al., (2014) model
%
%   This demos generates a simple figure that shows the behaviour of the Zilany et al. (2014) model
% 
%   Figure 1: Figure from Zilany et al. (2014) model
%
%
%   References:
%     M. S. A. Zilany, I. C. Bruce, and L. H. Carney. Updated parameters and
%     expanded simulation options for a model of the auditory periphery. The
%     Journal of the Acoustical Society of America, 135(1):283--286, Jan.
%     2014.
%     
%     M. Zilany, I. Bruce, P. Nelson, and L. Carney. A phenomenological model
%     of the synapse between the inner hair cell and auditory nerve:
%     Long-term adaptation with power-law dynamics. J. Acoust. Soc. Am.,
%     126(5):2390 -- 2412, 2009.
%     
%
%   Url: http://amtoolbox.sourceforge.net/amt-0.10.0/doc/demos/demo_zilany2014.php

% Copyright (C) 2009-2020 Piotr Majdak and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 0.10.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program.  If not, see <http://www.gnu.org/licenses/>.

%Parameter Settings

% model fiber parameters
CF    = 1.5e3;   % CF in Hz;   
fiberType = 1;  % spontaneous rate (in spikes/s) of the fiber BEFORE refractory effects; "1" = Low; "2" = Medium; "3" = High

% stimulus parameters
F0 = CF;     % stimulus frequency in Hz
fsstim = 100e3;  % sampling rate in Hz (must be 100, 200 or 500 kHz)
T  = 50e-3;  % stimulus duration in seconds
rt = 2.5e-3; % rise/fall time in seconds
stimdb = 65; % stimulus intensity in dB SPL

% peri-stimulus time histogram (PSTH) parameters
nrep = 1;               % number of stimulus repetitions (e.g., 50);
psthbinwidth = 0.5e-3;  % binwidth in seconds;


%% Computations

% Stimulus generation
t = 0:1/fsstim:T-1/fsstim; % time vector
mxpts = length(t);
irpts = rt*fsstim;
stim = sqrt(2)*20e-6*10^(stimdb/20)*sin(2*pi*F0*t); % unramped stimulus
stim(1:irpts)= stim(1:irpts).*(0:(irpts-1))/irpts; 
stim((mxpts-irpts):mxpts)=stim((mxpts-irpts):mxpts).*(irpts:-1:0)/irpts;

% AN modeling
[ANresp,fc,vihc,psth] = zilany2014(...
  stimdb,stim,fsstim,...
  'flow',CF','fhigh',CF,'nfibers',1,'fiberType',fiberType);

% PSTH conversion
timeout = (1:length(psth))*1/fsstim;
psthbins = round(psthbinwidth*fsstim);  % number of psth bins per psth bin
psthtime = timeout(1:psthbins:end); % time vector for psth
pr = sum(reshape(psth,psthbins,length(psth)/psthbins))/nrep; % pr of spike in each bin
Psth = pr/psthbinwidth; % psth in units of spikes/s


%% Plots

figure
subplot(4,1,1)
plot(timeout,[stim zeros(1,length(timeout)-length(stim))])
title('Input Stimulus')
ylabel('Pascal')

subplot(4,1,2)
plot(timeout,vihc(1:length(timeout)))
title('IHC Output')
ylabel('Volts')

subplot(4,1,3)
plot(timeout,ANresp);
xl = xlim;
title('Mean Rate Output')
ylabel('spikes/s')

subplot(4,1,4)
bar(psthtime,Psth)
xlim(xl)
title('Peri-stimulus Time Histogram')
xlabel('Time (s)')
ylabel('spikes/s')