THE AUDITORY MODELING TOOLBOX

This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).

View the help

Go to function

EXP_BAUMGARTNER2020 - - Simulations of Baumgartner and Majdak (2020)

Program code:

function data = exp_baumgartner2020(varargin)
%EXP_BAUMGARTNER2020 - Simulations of Baumgartner and Majdak (2020)
%   Usage: data = exp_baumgartner2020(flag) 
%
%   EXP_BAUMGARTNER2020(flag) reproduces figures of the study from 
%   Baumgartner and Majdak (2020).
%
%   The following flags can be specified
%
%     fig2 shows cue-specific predictions, sensitivities, prediction errors,  
%         and optimal relative weights in order to best explain the actual 
%         externalization ratings. Oracle: prediction errors obtained with 
%         the oracle model.
%
%     fig3 displays the prediction errors for all decision strategies, 
%         optimal cue weights and results for paired combinations.
%
%     hartmann1996 models experiments from Hartmann & Wittenberg (1996; Fig.7-8)
%         1st panel: Synthesis of zero-ILD signals. Only the harmonics 
%         from 1 to nprime had zero interaural level difference; 
%         harmonics above nprime retained the amplitudes of the baseline  
%         synthesis. Externalization scores as a function of the boundary  
%         harmonic number nprime. Fundamental frequency of 125 Hz.
%         2nd panel: Synthesis of signals to test the ISLD hypothesis. 
%         Harmonics at and below the boundary retained only the interaural 
%         spectral level differences of the baseline synthesis. Higher 
%         harmonics retained left and right baseline harmonic levels. 
%         Externalization scores as a function of the boundary
%         frequency.
%
%     hassager2016 models experiments from Hassager et al. (2016; Fig.6). 
%         The mean of the seven listeners perceived sound source 
%         location (black) as a function of the bandwidth factor 
%         and the corresponding model predictions (colored). 
%         The model predictions have been shifted slightly to the right 
%         for a better visual interpretation. The error bars are one 
%         standard error of the mean.
%
%     baumgartner2017 models experiments from Baumgartner et al. (2017). 
%         Effect of HRTF spectral contrast manipulations on sound externalization. 
%         Externalization scores were derived from paired comparisons via 
%         Bradley-Terry-Luce modeling.
%
%     boyd2012 models experiments from Boyd et al. (2012; Fig.1, top).
%         Average externalization ratings of 1 talker for NH participants 
%         against mix point as a function of microphone position (ITE/BTE) 
%         and frequency response (BB/LP). The reference condition (ref) is 
%         the same as ITE/BB. Error bars show SEM. 
%
%   Requirements: 
%   -------------
%
%   1) SOFA API v0.4.3 or higher from http://sourceforge.net/projects/sofacoustics for Matlab (in e.g. thirdparty/SOFA)
% 
%   2) Data in hrtf/baumgartner2017
%
%   3) Statistics Toolbox for Matlab (for some of the figures)
%
%   Examples:
%   ---------
%
%   To display indivdual predictions for all experiments use :
%
%     exp_baumgartner2020('fig2');
%
%   To display results for different decision strategies use :
%
%     exp_baumgartner2020('fig3');
%
%   References:
%     R. Baumgartner and P. Majdak. Decision making in auditory
%     externalization perception. bioRxiv, 2020.
%     
%     A. W. Boyd, W. M. Whitmer, J. J. Soraghan, and M. A. Akeroyd. Auditory
%     externalization in hearing-impaired listeners: The effect of pinna cues
%     and number of talkers. J. Acoust. Soc. Am., 131(3):EL268--EL274, 2012.
%     [1]arXiv | [2]www: ]
%     
%     W. M. Hartmann and A. Wittenberg. On the externalization of sound
%     images. J. Acoust. Soc. Am., 99(6):3678--88, June 1996.
%     
%     References
%     
%     1. http://arxiv.org/abs/ http://dx.doi.org/10.1121/1.3687015
%     2. http://dx.doi.org/10.1121/1.3687015
%     
%   hassager2016 baumgartner2017looming
%
%   Url: http://amtoolbox.sourceforge.net/amt-0.10.0/doc/experiments/exp_baumgartner2020.php

% Copyright (C) 2009-2020 Piotr Majdak and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 0.10.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program.  If not, see <http://www.gnu.org/licenses/>.
   
% AUTHOR: Robert Baumgartner, Acoustics Research Institute, Vienna, Austria

definput.import={'amt_cache','baumgartner2020'};
definput.flags.type = {'all','fig2','fig3','hartmann1996','hassager2016','baumgartner2017','boyd2012','pairs','figStrat','tab2','tab3'};
definput.flags.gradients={'positive','negative','both'};
definput.flags.quickCheck = {'','quickCheck'};
definput.flags.disp = {'progress','silent'};
definput.keyvals.Sintra = 2;
definput.keyvals.Sinter = 2;
definput.keyvals.numCue = 2;
definput.keyvals.ignore = {'ITSD'};

[flags,kv]  = ltfatarghelper({},definput,varargin);

Ncues = 8;

% Normalized externalization rating scale
Erange = 1;
Eoffset = 0;

% For cue combination analysis
% Sfix = [.16,.40,nan,.45,.70,.37,nan,nan]; % obtained from tab2
cueSelLbl = {{'MSS','ISS','MSSD','ISSD','ITIT','IC','MI'};...
             {'MSS','ISS','MSSD','ISSD','ITIT','IC'};...
             {'MSS','ISS','ISSD','ITIT','IC'};...
             {'MSS','ISS','ISSD','ITIT'};...
             {'MSS','ISSD','ITIT'};...
             {'MSS','ITIT'};...
             {'MSS'};...
            };
cueSelLblTxt = {'MSS, ISS, MSSD, ISSD, ITIT, IC, MI';...
                'MSS, ISS, MSSD, ISSD, ITIT, IC';...
                'MSS, ISS, ISSD, ITIT, IC';...
                'MSS, ISS, ISSD, ITIT';...
                'MSS, ISSD, ITIT';...
                'MSS, ITIT';...
                'MSS'};
              
strategies = {'Oracle','WSM','LTA','MTA','WTA'};

% Symbol order for plotting
symb = {'-o','-s','-h','-d','-<','->','-^','-x','-p',':*','--+',':v'};
colors = 0.8*[zeros(1,3);jet(Ncues);lines(3)];

%% Hartmann & Wittenberg (1996)
if flags.do_hartmann1996
  
  cond = {'ILD','ISLD'};
%   condPlotLbl = {'ILD to 0','ILD const.'};
  nprime = [0,1,8,14,19,22,25,38];
  f0 = 125; %Hz
  
  fncache = flags.type;%['hartmann1996'];
  if not(flags.do_positive)
    fncache = [fncache,'_',flags.gradients,'Grad'];
  end
  [Pext,cues,cueLbl] = amt_cache('get',fncache,flags.cachemode);
  if isempty(Pext)
    azi = -37;
    data = data_baumgartner2017;
    if flags.do_quickCheck
      data = data(1:5);
    end
    Pext = repmat({nan(length(data),length(nprime))},2,2);
    cues = repmat({nan(length(data),length(nprime),Ncues)},2,1);
    for isub = 1:length(data)
      Obj = data(isub).Obj;
      template = sig_hartmann1996(0,'Obj',Obj,'dur',0.1);
      for ee = 1:length(cond)
        for nn = 1:length(nprime)
          target = sig_hartmann1996(nprime(nn),'Obj',Obj,'dur',0.1,cond{ee});
          [~,cues{ee}(isub,nn,:),cueLbl] = baumgartner2020(target,template,'flow',100,'fhigh',5000,'lat',azi,flags.gradients);
        end
      end
      amt_disp([num2str(isub),' of ',num2str(length(data)),' subjects completed.'],'progress')
    end
    if not(flags.do_quickCheck)
      amt_cache('set',fncache,Pext,cues,cueLbl);
    end
  end
  
  %% Cue weighting optimization procedure
  
%   Erange = 1; % original: 3
%   Eoffset = 0;
  Pext = cell(Ncues-length(kv.ignore),length(cond));
  PextNumCue = cell(length(strategies),length(cond));
  figure
  hax{1} = tight_subplot(1,2,0,[.15,.1],[.1,.05]);
  figure;
  hax{2} = tight_subplot(1,2,0,[.15,.1],[.1,.05]);
  for ee = 1:length(cond)
    act = data_hartmann1996(cond{ee});
    actual = act.avg.Escore(:)/3; % normalized response scale
    
    % align actual and simulated data format
    tmp = permute(cues{ee},[2,1,3]);
    tmp = interp1(nprime,tmp,act.avg.nprime);
    predCue = squeeze(num2cell(tmp,1:2));
    
    fncache2 = [fncache,'_exp',num2str(ee)];
    amt_disp([flags.type,', Exp. ',num2str(ee)],'progress')
    amt_cache('set',[fncache2,'_fitting'],predCue,actual);
    
    % cue analysis: first optimal then fixed sensitivities
    [Pext(:,ee),PextNumCue(:,ee),cueTab{ee},cueSelTab{ee}] = cueAnalysis(...
      cueLbl,cueSelLbl,cueSelLblTxt,predCue,actual,Erange,Eoffset,fncache2,kv);
  
  %% Plot
    dataLbl = [{'Actual'};cueTab{ee}.Properties.RowNames];
    Nsubj = size(Pext{1},2);
    act = data_hartmann1996(cond{ee});
    x = 1e-3*f0*act.avg.nprime;
    yall = {Pext,PextNumCue};
    for iy = 1:length(yall)
      axes(hax{iy}(ee)); clear h
      y = yall{iy};
      for cc = 1:size(y,1)
          dx = 0.025*(cc - size(y,1)/2);
          h(cc+1) = errorbar(x+dx,mean(y{cc,ee},2),std(y{cc,ee},0,2)/sqrt(Nsubj),...
            symb{cc+1},'Color',colors(cc+1,:));
          hold on
      end
      h(1) = plot(x,act.avg.Escore/3,symb{1},'Color',colors(1,:));
      set(h(2:end),'MarkerFaceColor','w')
      set(h(1),'MarkerFaceColor','k')
      if ee == 1
        xlabel('Highest frequency altered in kHz') %n^{\prime}
        ylabel('Externalization')
      else
%         xlabel('Highest frequency altered in kHz')
        set(gca,'YTickLabel',{})
      end
      axis([x(1)-.5,x(end)+.5,Eoffset-0.1*Erange,Eoffset+1.1*Erange])
      box off
      if ee == 1
        if iy == 1
          leg= [{'Actual'};cueTab{ee}.Properties.RowNames];
          legend(h,leg(1:end-1),'Location','southwest','box','off');
        else
          leg= [{'Actual'};strategies(:)];
          legend(h,leg,'Location','southwest','box','off');
        end
      end
    end
  end

end

%% Hassager et al. (2016)
if flags.do_hassager2016
  azi = [0,50];
  flp = 6000; % lowpass filtered noise stimuli
  
  Pext_A = data_hassager2016;
  B = Pext_A.B;
  
  fncache = flags.type;
  if not(flags.do_positive)
    fncache = [fncache,'_',flags.gradients,'Grad'];
  end
  [Pext,cues,cueLbl] = amt_cache('get',fncache,flags.cachemode);
  if isempty(cues)
    
    data = data_baumgartner2017;
    if flags.do_quickCheck
      data = data(1:5);
    end

    cues = nan(length(B),length(azi),length(data),Ncues);
    for isubj = 1:length(data)
      Obj = data(isubj).Obj;
      for iazi = 1:length(azi)
        idazi = Obj.SourcePosition(:,1) == azi(iazi) & Obj.SourcePosition(:,2) == 0;
        template = squeeze(shiftdim(Obj.Data.IR(idazi,:,:),2));
        for iB = 1:length(B)
          amt_disp(num2str(iB),'volatile');
          if isnan(B(iB))
            target = template;
          else
            Obj_tar = sig_hassager2016(Obj,B(iB));
            target = squeeze(shiftdim(Obj_tar.Data.IR(idazi,:,:),2));
          end
          [~,cues(iB,iazi,isubj,:),cueLbl] = baumgartner2020(target,template,'flow',100,'fhigh',flp,'lat',azi(iazi),flags.gradients);
        end
      end
      amt_disp([num2str(isubj),' of ',num2str(length(data)),' subjects completed.'],'progress')
    end
     
    if not(flags.do_quickCheck)
      amt_cache('set',fncache,Pext,cues,cueLbl);
    end
  end
  
  %% Cue weighting optimization procedure
  dimSubj = 3;
%   dimCues = 4;
  Nsubj = size(cues,dimSubj);

  predCue = squeeze(num2cell(reshape(cues,[],Nsubj,Ncues),1:2));
  % optimize sensitivities
  actual = Pext_A.rating(:);%repmat(Pext_A.rating(:),Nsubj,1); 
  actual = (actual-1)/4; % normalized response scale
%   Erange = 1; % original: 4
%   Eoffset = 0; % original: 1
  amt_disp(flags.type)
  
  amt_cache('set',[fncache,'_fitting'],predCue,actual);
  
  % cue analysis
  [Pext,PextNumCue,cueTab,cueSelTab] = cueAnalysis(...
    cueLbl,cueSelLbl,cueSelLblTxt,predCue,actual,Erange,Eoffset,fncache,kv);

  
  %% Plot
  BplotTicks = logspace(log10(1),log10(64),3);
  BplotTicks = round(BplotTicks*100)/100;
  BplotStr = ['Ref.';[repmat(' ',3,1),num2str(BplotTicks(:)),repmat(' ',3,1)]];
  BplotTicks = [0.25/2,BplotTicks];
  B(1) = B(2)/2;
  yall = {Pext,PextNumCue};
  for iy = 1:length(yall)
    y = yall{iy};
    figure 
    hax = tight_subplot(1,2,0,[.15,.1],[.1,.05]);
    for iazi = 1:length(azi)
      axes(hax(iazi)); clear h
      h(1) = plot(B,(Pext_A.rating(:,iazi)-1)/4,symb{1},'Color',colors(1,:));
      hold on
      for m = 1:length(y)
        dx = 1+0.01*(m - (Ncues+1)/2);
        pred = reshape(y{m},length(B),[],Nsubj);
        h(m+1) = errorbar(dx*B,mean(pred(:,iazi,:),dimSubj),std(pred(:,iazi,:),0,dimSubj)/sqrt(Nsubj),...
          symb{m+1},'Color',colors(m+1,:));
      end
      set(h,'MarkerFaceColor','w')
      set(h(1),'MarkerFaceColor','k')
      set(gca,'XTick',BplotTicks,'XTickLabel',BplotStr,'XScale','log')
      axis([BplotTicks(1)/1.5,BplotTicks(end)*1.5,Eoffset-0.1*Erange,Eoffset+1.1*Erange])
      xlabel('Bandwidth Factor [ERB]')
      if iazi==1
        ylabel('Externalization')
      else
        set(gca,'YTickLabel',{})
      end
      text(0.125,Eoffset,[num2str(azi(iazi)),'\circ'])
    end
    if iy == 1
      leg=[{'Actual'};cueTab.Properties.RowNames];
      leg = legend(h,leg(1:end-1),'Location','southwest');
    else
      leg = legend(h,[{'Actual'};strategies(:)],'Location','southwest');
    end
    set(leg,'Box','off')
  end

  
end

%% Baumgartner et al. (2017) ----------------------------------------------
if flags.do_baumgartner2017
  
  % Behavioral results
  fncache = [flags.type,'_actual'];%'baumgartner2017_E_BTL';
  data = amt_cache('get',fncache,flags.cachemode);
  if isempty(data)
    exp2 = data_baumgartner2017looming('exp2');
    Nsubj = length(exp2.meta.subject);
    iISI = exp2.meta.ISI == 0.1;
    iresp = strcmp(exp2.meta.response,'approaching');
    data.C = 0:0.5:1;
    data.subj = [];%exp2.meta.subject;
    data.Escore = [];%nan(Nsubj,length(A));
    data.azi = [exp2.rawData.azimuth];
    M = zeros(3,3);
    iM = [7,4,8,3,2,6]; % indices to map judgements to preference matrix (
    iss = 0;
    for ss = 1:Nsubj
      M(iM) = exp2.data(ss,1:6,iresp,iISI)+eps;
      Ns = 200; % max # hits  
      E = nansum(M,2)/Ns;
      E = E/E(3);
      if E(1)<=1 % if C = 0 is more externalized than the reference (C = 1) either the subject misunderstood the task or something was wrong with the reference 
        iss = iss+1;
        data.subj{iss} = exp2.meta.subject{ss};
        data.Escore(iss,:) = E;
      end
    end 
    amt_cache('set',fncache,data)
  end
  Nsubj = length(data.subj);
  
  hrtf = data_baumgartner2017looming('exp2','hrtf');
  
  % Modeling
  fncache = flags.type;
  if not(flags.do_positive)
    fncache = [fncache,'_',flags.gradients,'Grad'];
  end
  [Pext,cues,cueLbl] = amt_cache('get',fncache,flags.cachemode);
  if isempty(cues)
    
    Pext = nan(length(data.C),Nsubj);
    cues = nan(length(data.C),Nsubj,Ncues);
    for isubj = 1:Nsubj
      template = hrtf(ismember({hrtf.id},data.subj(isubj))).Obj;
      for iC = 1:length(data.C)
        target = sig_baumgartner2017looming(template,data.C(iC));
        [Pext(iC,isubj),cues(iC,isubj,:),cueLbl] = baumgartner2020(target,template,...
                          'lat',data.azi(isubj),'flow',1000,'fhigh',18e3,flags.gradients);
        
      end
      amt_disp([num2str(isubj),' of ',num2str(Nsubj),' subjects completed.'],'progress')
    end
    amt_cache('set',fncache,Pext,cues,cueLbl);
  end
 
  %% Cue weighting optimization procedure
  dimSubj = 2;
  dimCues = 3;
%   Erange = 1;
%   Eoffset = 0;
  
  Nsubj = size(cues,dimSubj);
  actual = permute(data.Escore,[2,1]);
  predCue = squeeze(num2cell(cues,1:dimCues-1));
  amt_disp(flags.type)  
  amt_cache('set',[fncache,'_fitting'],predCue,actual);
  [Pext,PextNumCue,cueTab,cueSelTab] = cueAnalysis(...
    cueLbl,cueSelLbl,cueSelLblTxt,predCue,actual,Erange,Eoffset,fncache,kv);
  
  %% Figure
  flags.do_plot_individual = false;
  yall = {[{data.Escore'};Pext],[{data.Escore'};PextNumCue]};
  for iy = 1:length(yall)
    y = yall{iy};
    figure; clear h;
    if not(flags.do_plot_individual)
      for iE = 1:length(y)
        dx = .005*(iE - length(y)/2);
        h(iE) = errorbar(data.C+dx,mean(y{iE},2),std(y{iE},0,2)/sqrt(Nsubj),...
          symb{iE},'Color',colors(iE,:));
        set(h,'MarkerFaceColor','w')
        hold on
      end
      set(h(1),'MarkerFaceColor','k')
      set(gca,'XTick',data.C)
      axis([-0.2,1.2,Eoffset-0.1*Erange,Eoffset+1.1*Erange])
      ylabel('Externalization')
      xlabel('Spectral contrast, C')
    else % flags.do_plot_individual
      for isubj = 1:Nsubj
        subplot(3,ceil(Nsubj/3),isubj); clear h;
        for iE = 1:length(y)
          dx = .005*(iE - length(y)/2);
          h(iE) = plot(data.C+dx,y{iE}(:,isubj),...
            symb{iE},'Color',colors(iE,:));
          set(h,'MarkerFaceColor','w')
          hold on
        end
        set(h(1),'MarkerFaceColor','k')
        set(gca,'XTick',data.C)
        axis([-0.2,1.2,Eoffset-0.1*Erange,Eoffset+1.1*Erange])
        ylabel('Externalization')
        xlabel('Spectral contrast, C')
      end
    end
    if iy == 1
      leg=[{'Actual'};cueTab.Properties.RowNames];
      legend(h,leg(1:end-1),'Location','EastOutside','box','off')
    else
      leg=[{'Actual'};strategies(:)];
      legend(h,leg,'Location','EastOutside','box','off')
    end
  end
  
end

%% Boyd et al. (2012) -----------------------------------------------------
if flags.do_boyd2012
  
  flags.do_BRIR = true; % directly based on BRIRs
  flags.do_noise = false; % or based on BRIR-convoluted noise
  % otherwise: original speech samples
  
  flp = [nan,6500]; % Low-pass cut-off frequency
  azi = -30;
  
  subjects = data_boyd2012;
  if flags.do_noise || flags.do_BRIR
    subjects = subjects([3,6,7]); % only the ones with BRIRs
  else
    subjects = subjects([1,3,4,6,7]); % only the ones with stimuli
  end
  mix = subjects(1).Resp.mix/100;
  idn = not(isnan(mix));
  mix = mix(idn); % omit reference
  
  % determine cache name
  fncache = flags.type;%['boyd2012'];
  if not(flags.do_positive)
    fncache = [fncache,'_',flags.gradients,'Grad'];
  end
  if flags.do_noise
    fncache = [fncache,'_noise'];
  elseif flags.do_BRIR
    % standard
  else
    fncache = [fncache,'_speech'];
  end
    
  [E,cues,cueLbl] = amt_cache('get',fncache,flags.cachemode);
  if isempty(cues)
    
    if flags.do_noise || flags.do_BRIR
      sig = noise(50e3,1,'pink');
      fs = subjects(1).BRIR.fs;
      [b,a]=butter(10,2*flp(2)/fs,'low');
    end

    E.all = repmat({nan([length(mix),2,2,length(subjects)])},1,1);
    cues = nan(length(mix),2,2,length(subjects),Ncues);
    for isub = 1:length(subjects)
      E.all{1}(:,:,:,isub) = cat(3,...
        [subjects(isub).Resp.ITE_BB_1T(idn),subjects(isub).Resp.BTE_BB_1T(idn)],...
        [subjects(isub).Resp.ITE_LP_1T(idn),subjects(isub).Resp.BTE_LP_1T(idn)]);
      if flags.do_noise
        stim{1} = lconv(sig,subjects(isub).BRIR.ITE(:,:,1));
        stim{2} = lconv(sig,subjects(isub).BRIR.BTE(:,:,1));
        stim{3} = lconv(sig,subjects(isub).BRIR.noHead(:,:,1));
        template = stim{1};
        targetSet = cell(length(mix),2,2);
      elseif flags.do_BRIR
        template = subjects(isub).BRIR.ITE(:,:,1);
        stim{1} = subjects(isub).BRIR.ITE(:,:,1);
        stim{2} = subjects(isub).BRIR.BTE(:,:,1);
        stim{3} = subjects(isub).BRIR.noHead(:,:,1);
        targetSet = cell(length(mix),2,2);
      else % speech samples
        template = subjects(isub).Reference_1T;
        targetSet = cat(3,...
          [subjects(isub).Target.ITE_BB_1T(:),subjects(isub).Target.BTE_BB_1T(:)],...
          [subjects(isub).Target.ITE_LP_1T(:),subjects(isub).Target.BTE_LP_1T(:)]);
      end

      %% Model simulations
      flow = 100;
      fhigh = [16e3,16e3];  % set fhigh(2) to flp(2) for manual bandwidth adjustment
            
      for c = 1:2
        for lp = 1:2
          for m = 1:length(mix)
            % mixing
            if flags.do_noise || flags.do_BRIR
              targetSet{m,c,lp} = mix(m)*stim{c} + (1-mix(m))*stim{3};
              % low-pass filtering
              if lp == 2
                targetSet{m,c,lp} = filter(b,a,targetSet{m,c,lp});
              end
            end
            target = targetSet{m,c,lp};
            [~,cues(m,c,lp,isub,:),cueLbl] = baumgartner2020(target,template...
              ,'argimport',flags,kv,'flow',flow,'fhigh',fhigh(lp),'lat',azi,flags.gradients);%,'reflectionOnsetTime',5e-3);
             
          end
        end
      end
      amt_disp([num2str(isub),' of ',num2str(length(subjects)),' subjects completed.'],'progress')

    end
    
    if not(flags.do_quickCheck)
      amt_cache('set',fncache,E,cues,cueLbl);
    end
  end

  %% Cue weighting optimization procedure
  dimSubj = 4;
%   Erange = 1; % original: 100
%   Eoffset = 0;
  
  Nsubj = size(cues,dimSubj);
  if flags.do_BRIR % comparison on individual basis
    actual = E.all{1};
    actual = reshape(actual,[],Nsubj);
  else % average comparison
    actual = mean(E.all{1},4);
    actual = actual(:);
  end
  
  actual = actual/100; % normalized response range
  E.all{1} = E.all{1}/100;
  
  predCue = squeeze(num2cell(reshape(cues,[],Nsubj,Ncues),1:2));
  amt_disp(flags.type)
  amt_cache('set',[fncache,'_fitting'],predCue,actual);
  [Pext,PextNumCue,cueTab,cueSelTab] = cueAnalysis(...
    cueLbl,cueSelLbl,cueSelLblTxt,predCue,actual,Erange,Eoffset,fncache,kv);
  
  dims = [length(mix),size(cues,2),size(cues,3),size(cues,4)];
  for ii = 1:length(Pext)
    E.all{ii+1} = reshape(Pext{ii},dims);
  end
  EnumCue = E.all(1);
  for ii = 1:length(PextNumCue)
    EnumCue{ii+1} = reshape(PextNumCue{ii},dims);
  end
  
  %% Plot
  flags.do_plot_individual = false;
  
  condLbl = {'ITE | BB','BTE | BB','ITE | LP','BTE | LP'};
  mix = mix*100;
  
  if not(flags.do_plot_individual)
    yall = {E.all,EnumCue};
    for iy = 1:length(yall)
      y = yall{iy};
      figure
      hax = tight_subplot(2,2,0,[.15,.1],[.1,.05]);
      for cc = 1:length(condLbl)
        axes(hax(cc))
        for ee = 1:length(y)
          dx = 0.5*(ee - length(y)/2);
          m = mean(y{ee},4);
          s = std(y{ee},0,4);
          h = errorbar(mix+dx,m(:,cc),s(:,cc),...
            symb{ee},'Color',colors(ee,:));
          if ee == 1
            set(h,'MarkerFaceColor','k')
          else
            set(h,'MarkerFaceColor','w')
          end
          hold on
        end
        set(gca,'XDir','reverse')

        if cc == 3 || cc == 4
          xlabel('Mix (%)')
        else
          set(gca,'XTickLabel',[])
        end

        if cc == 1 || cc == 3
          ylabel('Externalization')
        else
          set(gca,'YTickLabel',[])
        end
        text(110,0,condLbl{cc},'HorizontalAlignment','left')
        axis([-20,120,Eoffset-0.1*Erange,Eoffset+1.1*Erange])
        if cc == 4
        end
      end
    end
  else % flags.do_plot_individual
    
    for isub = 1:size(E.all{1},4)
      figure
      hax = tight_subplot(1,4,0,[.15,.1],[.1,.05]);
      for cc = 1:length(condLbl)
        axes(hax(cc))
        for ee = 1:Nee
          Eisub = E.all{ee}(:,:,:,isub);
          h = plot(mix,Eisub(2:end,cc),symb{ee},'Color',colors(ee,:));
          set(h,'MarkerFaceColor','w')
          hold on
        end
        set(gca,'XDir','reverse')
        xlabel('Mix (%)')
        if cc == 1
          ylabel('Externalization')
        else
          set(gca,'YTickLabel',[])
        end
        title(condLbl{cc})
        axis([-20,120,Eoffset-0.1*Erange,Eoffset+1.1*Erange])
        if cc == 4
          leg = legend(dataLbl);
          set(leg,'Box','off','Location','north')
        end
      end
    end
    
  end

%% Output
Pext = E;

end

if flags.do_all
  exp = {'hartmann1996','hassager2016','baumgartner2017','boyd2012'};
  for ii = 1:length(exp)
    exp_baumgartner2020(exp{ii},flags.cachemode);
  end
  
elseif flags.do_fig3 || flags.do_pairs
  exp = {'hartmann1996_exp1','hartmann1996_exp2','hassager2016','baumgartner2017','boyd2012'};
  Nexp = length(exp);
  [~,~,cueLbl] = amt_cache('get','hassager2016');
  predCue = [];
  actual = [];
  for ii = 1:Nexp
    if flags.do_positive
      fn = [exp{ii},'_fitting'];
    else
      if ii <=2
        fn = [exp{ii}(1:12),'_',flags.gradients,'Grad',exp{ii}(13:end),'_fitting'];
      else
        fn = [exp{ii},'_',flags.gradients,'Grad','_fitting'];
      end
    end
    [p,a] = amt_cache('get',fn);
    if isempty(p)
      amt_disp('Execution stopped because cached data not found. Please run calculations for fig2 first.')
      return
    end
    p = mean(cat(3,p{:}),2);
    predCue = cat(1,predCue,p);
    actual = cat(1,actual,mean(a,2));
  end
  predCue = squeeze(num2cell(predCue,1:2));
  
  Pext = cell(length(cueSelLbl),1);
  Nstrat = length(strategies)-1; % no Oracle
  Wsel = nan(length(cueSelLbl),length(cueSelLbl{1}),Nstrat);
  RMSE = nan(length(cueSelLbl),Nstrat);
  RMSE_CI = nan(length(cueSelLbl),Nstrat,2);
  BIC = RMSE;
  for ics = 1:length(cueSelLbl)
    cueSelId = ismember(cueLbl(:,1),cueSelLbl{ics});
    [Pext{ics},S{ics},Wtmp,MSEtmp,BICtmp] = mapAndDecide(...
      predCue(cueSelId),actual,Erange,Eoffset);
    Wsel(ics , ismember(cueSelLbl{1},cueSelLbl{ics}),:) = Wtmp(:,2:end);
    RMSE(ics,:) = sqrt(MSEtmp.m(end-Nstrat+1:end));
    RMSE_CI(ics,:,:) = sqrt(MSEtmp.ci(end-Nstrat+1:end,:));
    BIC(ics,:) = BICtmp(end-Nstrat+1:end);
  end
  cueSelTab{1} = table(RMSE(:,1),RMSE(:,2),RMSE(:,3),RMSE(:,4),...
            BIC(:,1),BIC(:,2),BIC(:,3),BIC(:,4),...
      'RowNames',cueSelLblTxt,...
      'VariableNames',...
      {'RMSE_WSM','RMSE_LTA','RMSE_MTA','RMSE_WTA',...
       'BIC_WSM','BIC_LTA','BIC_MTA','BIC_WTA'});
  amt_disp('Prediciton errors for tested decisions:');
  amt_disp(cueSelTab{1});
  for ss = 1:Nstrat
    amt_disp([strategies{1+ss} ' weights/percentages'])
    cueSelTab{1+ss} = array2table([squeeze(Wsel(:,:,ss)),RMSE(:,ss),BIC(:,ss)],...
      'VariableNames',[cueSelLbl{1},{'RMSE','BIC'}],...
      'RowNames',cueSelLblTxt);
     amt_disp(cueSelTab{1+ss});
  end

  figure;
  colors = [0.8500    0.3250    0.0980;... % red
            0.9290    0.6940    0.1250;... % yellow
            0.4940    0.1840    0.5560;... % purple
            0.4660    0.6740    0.1880]; % green
  x = length(cueSelLbl{1}):-1:1;
  b = bar(x,RMSE);
  for i = 1:length(b)
    b(i).FaceColor = colors(i,:);
  end
  hold on
  ngroups = size(RMSE, 1);
  nbars = size(RMSE, 2);
  % Calculating the width for each bar group
  groupwidth = min(0.8, nbars/(nbars + 1.5));
  errlow = RMSE-RMSE_CI(:,:,1);
  errhigh = RMSE_CI(:,:,2)-RMSE;
  for i = 1:nbars
      x = (1:ngroups) - groupwidth/2 + (2*i-1) * groupwidth / (2*nbars);
      errorbar(fliplr(x), RMSE(:,i), errlow(:,i), errhigh(:,i), 'k.');
  end
  hold off
  leg = legend(strategies(2:end),'Location','northwest');
  leg.Box = 'off';
  xlabel('Number of cues')
  ylabel('Mean squared prediction error')

  %% only plot results for 7 cues
  figure
  for ii = 1:4
    b(ii) = bar(ii,RMSE(1,ii));
    b(ii).FaceColor = colors(ii,:);
    hold on
    errorbar(ii, RMSE(1,ii), errlow(1,ii), errhigh(1,ii), 'k.');
  end
  hold off
  set(gca,'XLim',[.4,4.6],'XTick',1:4,'XTickLabel',strategies(2:end))
  set(gca,'XTickLabelRotation',45)
  xlabel('Strategy')
  ylabel('RMS prediction error')
  box off
%     RB_print(gcf,[3.5,8],'exp_baumgartner2020_tab1_MSEallCues',10,2,'-r1000',1)
  %%
  figure
  x = 1:length(cueSelLbl{1});
  Wsel(:,:,1) = 100*Wsel(:,:,1); % also weights in percent
  b = barh(fliplr(x),squeeze(Wsel(1,:,:)));
  for i = 1:length(b)
    b(i).FaceColor = colors(i,:);
  end
  set(gca,'YTick',x,'YTickLabel',fliplr(cueSelLbl{1}))
%     xlabel('Cue')
  xlabel('Weight or selection rate in %')
  box off
%     RB_print(gcf,[5.5,8],'exp_baumgartner2020_tab1_weights',10,2,'-r1000',1)

  Ncues = length(cueSelLbl{1});
  combs = nchoosek(1:Ncues,2);
  Ncombs = size(combs,1);
  Pext = cell(Ncombs,1);
  Wsel = nan(Ncombs,Ncues);
  S = nan(Ncombs,Ncues);
  Nstrat = length(strategies)-1; % no Oracle
  RMSE = nan(Ncombs,Nstrat);
  RMSE_CI = nan(Ncombs,Nstrat,2);
  BIC = RMSE;
  for ics = 1:Ncombs
    cueSelId = false(length(predCue),1);
    cueSelId(combs(ics,:)) = true;
    [Pext{ics},Stmp,Wtmp,MSEtmp,BICtmp] = mapAndDecide(...
      predCue(cueSelId),actual,Erange,Eoffset);
    Wsel(ics , cueSelId(1:Ncues)) = Wtmp(:,2);
    S(ics , cueSelId(1:Ncues)) = Stmp;
    RMSE(ics,:) = sqrt(MSEtmp.m(end-Nstrat+1:end));
    RMSE_CI(ics,:,:) = sqrt(MSEtmp.ci(end-Nstrat+1:end,:));
    BIC(ics,:) = BICtmp(end-Nstrat+1:end);
  end
  Stab = array2table(S,'VariableNames',cueSelLbl{1});
  data = array2table(cat(2,Wsel,RMSE(:,1),squeeze(RMSE_CI(:,1,:))),...
          'VariableNames',cat(2,cueSelLbl{1},{'WSM_RMSE','CI_low','CI_high'}));
  [data,isort]=sortrows(data,8);
  Stab = Stab(isort,:);
  amt_disp('Contributions and Prediction errors:');
  amt_disp(data)
  amt_disp('Sensitivities:')
  amt_disp(Stab)
  %%
  figure
  ha = tight_subplot(2,1,0,[.12 .03],[.15 .22]);
  axes(ha(1))
  x = 1:length(isort);
  xlim = [x(1)-.5,x(end)+.5];
  y = RMSE(isort,1);
  try
    h = errorbar(x,y,y-RMSE_CI(isort,1,1),RMSE_CI(isort,1,2)-y,'k.','CapSize',0);
  catch
    h = errorbar(x,y,y-RMSE_CI(isort,1,1),RMSE_CI(isort,1,2)-y,'k.');
  end
  hold on
  plot(xlim,ones(2,1)*RMSE_CI(isort(1),1,2),'k--')
  ylabel('Error')
  axis([xlim,.01,.5])
  box off
  set(gca,'XTickLabel',{},'XTick',x)
  axes(ha(2))
  imagesc(Wsel(isort,:)')
  colormap(flipud(hot(100)));
  c = colorbar('eastoutside');
  c.Position(1) = c.Position(1)+.1;
  c.Label.String = 'Weight';
  c.Box = 'off';
  XTickLabel = num2cell(x);
  XTickLabel(2:2:end) = repmat({[]},floor(length(x)/2),1);
  set(gca,'YTick',1:length(cueSelLbl{1}),'YTickLabel',cueSelLbl{1},'XTick',x,'XTickLabel',XTickLabel)
  xlabel('Error rank')
  box off
%     RB_print(gcf,[8,8],'exp_baumgartner2020_pairs',10,10,'-r1000',1)
  
elseif flags.do_tab2 || flags.do_fig2

  exp = {'hartmann1996_exp1','hartmann1996_exp2','hassager2016','baumgartner2017','boyd2012'};
  Nexp = length(exp);
  for ii = 1:Nexp
    
    if flags.do_positive
      fn = [exp{ii},'_tab2'];
    else
      if ii <=2
        fn = [exp{ii}(1:12),'_',flags.gradients,'Grad',exp{ii}(13:end),'_tab2'];
      else
        fn = [exp{ii},'_',flags.gradients,'Grad','_tab2'];
      end
    end
    tab = amt_cache('get',fn,flags.cachemode);
%     amt_disp(['Collecting data for ' exp{ii}],'progress');
    if isempty(tab)
      if ii == 1
        exp{ii} = 'hartmann1996';
      end
      if ii == 2
        tab = amt_cache('get',[exp{ii},'_tab2'],'localonly'); % has been (re)computed together with exp. 1
      else
        data = exp_baumgartner2020(exp{ii},flags.cachemode);
        if ii < 3
          tab = data{1}{2};
        else
          tab = data{1};
        end
      end
    end
    
    tabT = array2table(transpose(table2array(tab(:,1:3))));
    for rr = 1:3
      tabT.Properties.RowNames{rr} = ['Exp',num2str(ii),'_',tab.Properties.VariableNames{rr}];
    end
    tab.Properties.RowNames = strrep(tab.Properties.RowNames,'Oracle','Oracle');
    tabT.Properties.VariableNames = tab.Properties.RowNames;
    
    if ii == 1
      tab2 = tabT;
    else
      tab2 = [tab2;tabT];
    end
    
  end
  Error = tab2{2:3:end,:};
  Sensitivity = tab2{1:3:end,:};
  Weight = tab2{3:3:end,:};
  
  MeanError = mean(Error);
  WavgS_cue = sum(Sensitivity.*Error.^-2./repmat(sum(Error.^-2),5,1));
  MeanWeight = mean(Weight);
  
  sumTab = array2table([WavgS_cue;MeanError;MeanWeight]);
  sumTab.Properties.VariableNames = tab2.Properties.VariableNames;
  sumTab.Properties.RowNames = {'W. Avg. S_cue','Mean Error','Mean Weight'};
  tab2 = [tab2;sumTab];
%   disp('here we want to display Tab2');
  if ~flags.do_fig2, amt_disp(tab2,flags.disp); end
  % Output
  data = tab2;
  
  if flags.do_fig2
    exp_baumgartner2020('all')
    
    figure
    x = 1:5;
    imagesc(Error(:,1:7)')
    colormap(flipud(copper(100)));
    c = colorbar('eastoutside');
    c.Label.String = 'Error';
    c.Box = 'off';
    c.Limits = round(c.Limits*10)/10;
    c.Ticks = c.Limits(1):.1:c.Limits(2);
    XTickLabel = {'I','II','III','IV','V'};
    set(gca,'YTick',1:length(cueSelLbl{1}),'YTickLabel',cueSelLbl{1},'XTick',x,'XTickLabel',XTickLabel)
    xlabel('Experiment')
    box off
%     RB_print(gcf,[6,5],'exp_baumgartner2020_singleCueErr',10,10,'-r1000',1)
    
    figure
    imagesc(log10(1./Sensitivity(:,1:7)'))
    colormap(flipud(summer(100)));
    c = colorbar('eastoutside');
    c.Label.String = 'Log Sensitivity';
    c.Box = 'off';
%     set(gca,'ColorScale','log')
    XTickLabel = {'I','II','III','IV','V'};
    set(gca,'YTick',1:length(cueSelLbl{1}),'YTickLabel',cueSelLbl{1},'XTick',x,'XTickLabel',XTickLabel)
    xlabel('Experiment')
    box off
%     RB_print(gcf,[6,5],'exp_baumgartner2020_singleCueS',10,10,'-r1000',1)
  end
  
elseif flags.do_tab3 || flags.do_figStrat
    
  experiments = {'Exp.I','Exp.II','Exp.III','Exp.IV','Exp.V'};
  exp = {'hartmann1996_exp1','hartmann1996_exp2','hassager2016','baumgartner2017','boyd2012'};
  Nexp = length(exp);
  MSE = [];
  BIC = [];
  for ii = 1:Nexp
    
    if flags.do_positive
      fn = [exp{ii},'_tab3'];
    else
      if ii <=2
        fn = [exp{ii}(1:12),'_',flags.gradients,'Grad',exp{ii}(13:end),'_tab3'];
      else
        fn = [exp{ii},'_',flags.gradients,'Grad','_tab3'];
      end
    end
    tab = amt_cache('get',fn,flags.cachemode);
    
    if isempty(tab)
      if ii == 1
        exp{ii} = 'hartmann1996';
      end
      if ii == 2
        tab = amt_cache('get',[exp{ii},'_tab3']); % has been (re)computed together with exp. 1
      else
        data = exp_baumgartner2020(exp{ii},flags.cachemode);
        if ii < 3
          tab = data{2}{2};
        else
          tab = data{2};
        end
      end
    end
    
    if ii == 1
      meanTab = tab;
    else
      meanTab{:,:} = meanTab{:,:} + tab{:,:};
    end
    
    MSE(:,:,ii) = tab{:,7+(1:length(strategies))};
    BIC(:,:,ii) = tab{:,8+length(strategies):end};
    
  end
  meanTab{:,:} = 1/Nexp * meanTab{:,:};
  
  if flags.do_tab3
%     disp('Here we want to display Tab 3');
    amt_disp(meanTab,flags.disp);
    % Output
    data = meanTab;
    
  else % flags.do_figStrat
      dBIC = BIC-repmat(BIC(:,1,:),1,length(strategies),1);
      y = {MSE,dBIC};
      ylbl = {'Mean squared prediction error','BIC'};
      for yy = 1:length(y)
          figure
          Ncues = size(y{yy},1):-1:1;
          b = bar(Ncues,mean(y{yy},3));
    %       set(gca,'XDir','reverse')
          hold on
          symbols = {'o','s','<','p','h'};
          hleg = nan(Nexp,1);
          for ii = 1:Nexp
            for jj = 1:length(strategies)
                h = plot(Ncues+ .9*(jj/(1+length(strategies))-0.5),y{yy}(:,jj,ii),['k',symbols{ii}]);
                set(h,'MarkerFaceColor',b(jj).FaceColor)
            end
            hleg(ii) = h(1);
          end
          xlabel('Number of cues')
          ylabel(ylbl{yy})
          l = legend([b';hleg],[strategies,experiments]);
    %       l = legend([flipud(b');hleg],[fliplr(strategies),experiments]);
          set(l,'Box','off','Location','eastoutside')
          box off
      end
  end
      
  
else
  
  %% Output
  data = {cueTab,cueSelTab,Pext};
end

end


%%%%%%%%%%%%%%%%%%%% INTERNAL FUNCTIONS %%%%%%%%%%%%%%%%%%%%
function ha = tight_subplot(Nh, Nw, gap, marg_h, marg_w)

% tight_subplot creates "subplot" axes with adjustable gaps and margins
%
% ha = tight_subplot(Nh, Nw, gap, marg_h, marg_w)
%
%   in:  Nh      number of axes in hight (vertical direction)
%        Nw      number of axes in width (horizontaldirection)
%        gap     gaps between the axes in normalized units (0...1)
%                   or [gap_h gap_w] for different gaps in height and width 
%        marg_h  margins in height in normalized units (0...1)
%                   or [lower upper] for different lower and upper margins 
%        marg_w  margins in width in normalized units (0...1)
%                   or [left right] for different left and right margins 
%
%  out:  ha     array of handles of the axes objects
%                   starting from upper left corner, going row-wise as in
%                   going row-wise as in
%
%  Example: ha = tight_subplot(3,2,[.01 .03],[.1 .1],[.1 .1])
%           for ii = 1:6; axes(ha(ii)); plot(randn(10,ii)); end
%           set(ha(1:4),'XTickLabel',''); set(ha,'YTickLabel','')

% Pekka Kumpulainen 20.6.2010   @tut.fi
% Tampere University of Technology / Automation Science and Engineering


if nargin<3; gap = .02; end
if nargin<4 || isempty(marg_h); marg_h = .05; end
if nargin<5; marg_w = .05; end

if numel(gap)==1; 
    gap = [gap gap];
end
if numel(marg_w)==1; 
    marg_w = [marg_w marg_w];
end
if numel(marg_h)==1; 
    marg_h = [marg_h marg_h];
end

axh = (1-sum(marg_h)-(Nh-1)*gap(1))/Nh; 
axw = (1-sum(marg_w)-(Nw-1)*gap(2))/Nw;

py = 1-marg_h(2)-axh; 

ha = zeros(Nh*Nw,1);
ii = 0;
for ih = 1:Nh
    px = marg_w(1);
    
    for ix = 1:Nw
        ii = ii+1;
        ha(ii) = axes('Units','normalized', ...
            'Position',[px py axw axh], ...
            'XTickLabel','', ...
            'YTickLabel','');
        px = px+axw+gap(2);
    end
    py = py-axh-gap(1);
end
end

function [Pext,PextNumCue,cueTab,cueSelTab] = cueAnalysis(cueLbl,cueSelLbl,cueSelLblTxt,predCue,actual,Erange,Eoffset,fncache,kv)

% remove to be ignored cues
idkeep = not(ismember(cueLbl(:,1),kv.ignore));
cueLbl = cueLbl(idkeep,:);
predCue = predCue(idkeep);
    
[Pext,S,W,MSE] = mapAndDecide(predCue,actual,Erange,Eoffset);

PextLbl = [cueLbl(:,1);{'Oracle'}];
cueTab = table([S;nan],MSE.m(1:length(S)+1),[W(:,1);nan],...
  [cueLbl(:,2);...
  {'Weighted combination'}],...
  'RowNames',PextLbl,...
  'VariableNames',{'S_cue','Error','Weight','Description'});
flags=amt_flags;
if strcmp(flags.disp,'verbose'), 
    amt_disp(['Showing modelling details for ' fncache]);
    amt_disp(cueTab); 
end
amt_cache('set',[fncache,'_tab2'],cueTab);  

try
  tab2 = exp_baumgartner2020('tab2','cached','silent');
catch
  amt_disp('Table 2 cannot be created. Re-run individual experiments.')
end 
if exist('tab2','var') && not(isempty(tab2))
  Sfix = tab2{16,:};
  MSE = nan(length(cueSelLbl),5);
  BIC = nan(length(cueSelLbl),5);
  Wsel = nan(length(cueSelLbl),length(cueSelLbl{1}));
  try 
    tab3 = exp_baumgartner2020('tab3','cached','silent'); 
  catch
    tab3 = array2table(nan(length(cueSelLbl),length(cueSelLbl{1})));  
    amt_disp('Re-run to calculate WSM')
  end
  PextNumCue = cell(length(cueSelLbl),1);
  for ics = 1:length(cueSelLbl)
    Wfix = tab3{ics,ismember(cueSelLbl{1},cueSelLbl{ics})};
    cueSelId = find(ismember(cueLbl(:,1),cueSelLbl{ics}));
    [PextNumCue{ics},~,Wtmp,MSEtmp,BICtmp] = mapAndDecide(...
        predCue(cueSelId),actual,Erange,Eoffset,Sfix(cueSelId),Wfix);
    Wsel(ics , ismember(cueSelLbl{1},cueSelLbl{ics})) = Wtmp(:,1);
    MSE(ics,:) = MSEtmp.m(end-4:end);
    BIC(ics,:) = BICtmp(end-4:end);
  end
  cueSelTab = [array2table(Wsel,'VariableNames',cueSelLbl{1}),...
      table(MSE(:,1),MSE(:,2),MSE(:,3),MSE(:,4),MSE(:,5),...
            BIC(:,1),BIC(:,2),BIC(:,3),BIC(:,4),BIC(:,5),...
      'RowNames',cueSelLblTxt,...
      'VariableNames',...
      {'Error_Oracle','Error_WSM','Error_LTA','Error_MTA','Error_WTA',...
       'BIC_Oracle','BIC_WSM','BIC_LTA','BIC_MTA','BIC_WTA'})];
  if strcmp(flags.disp,'verbose'),
   amt_disp(['Showing cue contributions for ' fncache]);
   amt_disp(cueSelTab)
  end
  amt_cache('set',[fncache,'_tab3'],cueSelTab);
else
  cueSelTab = nan;
end

% only output to be plotted data
Pext = Pext(1:length(S)); % only single-cue predictions
if exist('PextNumCue','var')
  PextNumCue = PextNumCue{end-kv.numCue+1}; % only specific # cues
  PextNumCue = PextNumCue(kv.numCue+1:end); % only combination strategies
else
  PextNumCue = Pext(kv.numCue+1:end);
  amt_disp('Warning: Used *Pext* instead of *PextNumCue*.')
end
end

function [Pext,S,W,MSE,BIC] = mapAndDecide(predCue,actual,Erange,Eoffset,S,Wfix)
% [Pext,S,W,MSE,BIC] = mapAndDecide(predCue,actual,Erange,Eoffset,S,Wfix)
%
% Input parameters:
% predCue ... cue-specific deviation metrics; 
%             matrix dimensions: conditions x listeners
% actual ... listeners' externalization scores; matrix dimensions must
%            match *predCue*
% Erange ... range of externalization rating scale, typically 1
% Eoffset ... offset of externalization rating scale, typically 0
% S ... sensitivity parameters, one for each cue [optional, otherwise optimized]
% Wfix ... fixed weights for cues [optional, otherwise optimized]
% 
% Output parameters:
% Pext ... predicted externalization scores (first) for individual cues and 
%          (then) for cue combinations (see decision strategies)
% S ... sensitivity parameters, one for each cue
% W ... weights to combine selected cues and percentages of cue selection 
%       for optimally predicting *actual*
% MSE ... mean squared error
% BIC ... Bayesian information criterion
%
% Decision strategies:
% 1) optimal weighting ("oracle")
% 2) fixed weighting ("weighted sum model")
% 3) minimum externalization selection ("loser takes all")
% 4) median externalization selection ("median takes all")
% 5) maximum externalization selection ("winner takes all")

% Definitions of error functions
f_cue2E = @(cue,s) baumgartner2020_mapping(cue,s,Erange,Eoffset);
if size(actual,2) > 1 % Individual data
  f_predErr = @(p) nanmean((p(:)-actual(:)).^2);%nanrms(p(:)-actual(:)) / (Erange-Eoffset);
  f_predErrA = @(p,a) nanmean((p(:)-a(:)).^2); % used for bootstrapping
else % Average data
  f_predErr = @(p) nanmean((mean(p,2) - actual).^2);%nanrms(p(:)-actual(:)) / (Erange-Eoffset);
  f_predErrA = @(p,a) nanmean((mean(p,2) - a).^2);
end

Ncues = length(predCue);

% Optimize sensitivities
if not(exist('S','var'))
  S = ones(Ncues,1); % sensitivity to cue
  for cc = 1:Ncues
    S(cc) = fminsearch(@(s) f_predErr(f_cue2E(predCue{cc},s)),S(cc));
  end
end

% Compute externalization scores
predExtSingle = nan([size(predCue{1}),Ncues]);
for cc = 1:Ncues
  if all(isnan(predCue{cc}(:)))
    predExtSingle(:,:,cc) = zeros(size(predCue{cc}));
  else
    predExtSingle(:,:,cc) = f_cue2E(predCue{cc},S(cc));
  end
%   MSE.m(cc) = f_predErr(predExtSingle(:,:,cc)); % mean(abs( predE(:,cc) - actual )) / (Erange-Eoffset);
end

% Optimize weights
W = 1/Ncues*ones(size(S)); % weighting of cue
f_weight = @(p,w) reshape( reshape(p,[],length(w))*w(:) ,size(p,1),[]);
f_opt = @(p,w) f_predErr( f_weight(p,abs(w)./sum(abs(w))) );
o = optimset('Display','off');
W = fminsearch(@(w) f_opt(predExtSingle,w) , W,o); 
W = abs( W );
W = W/sum(W);
W(W<.005) = 0; % threshold the weights
W = W/sum(W);

if not(exist('Wfix','var'))
  Wfix = W;
end
if sum(isnan(Wfix))>0, Wfix=W; end
% Decision strategies
  function [E,cueStat] = f_select(cue,s,type) 
    Eall = reshape(...
      f_cue2E(cue(:),repmat(s(:),length(cue(:))/length(s(:)),1)),...
      size(cue,1),size(cue,2),size(cue,3));
    switch type
      case 'LTA'
        [E,iCue] = nanmin(Eall,[],3);
      case 'MTA'
        E = median(Eall,3,'omitnan');
        [~,iCue] = nanmin((Eall-repmat(E,1,1,size(Eall,3))).^2,[],3);
      case 'WTA'
        [E,iCue] = nanmax(Eall,[],3);
      otherwise
        error('Undefined type of decision strategy')
    end
    cueStat = 100*histcounts(iCue,1:Ncues+1)/length(iCue);
  end

predExtComb(:,:,1) = f_weight(predExtSingle,W); % Oracle
predExtComb(:,:,2) = f_weight(predExtSingle,Wfix); % WSM

predCueMtx = cat(3,predCue{:});
cueStat = nan(Ncues,3);
o = optimset('MaxFunEvals',300*length(S),'Display','off');
S_LTA=fminsearch(@(s) f_predErr(f_select(predCueMtx,s,'LTA')),S,o);
[predExtComb(:,:,3),cueStat(:,1)] = f_select(predCueMtx,S_LTA,'LTA');
S_MTA=fminsearch(@(s) f_predErr(f_select(predCueMtx,s,'MTA')),S,o);
[predExtComb(:,:,4),cueStat(:,2)] = f_select(predCueMtx,S_MTA,'MTA');
S_WTA=fminsearch(@(s) f_predErr(f_select(predCueMtx,s,'WTA')),S,o);
[predExtComb(:,:,5),cueStat(:,3)] = f_select(predCueMtx,S_WTA,'WTA');


predExt = cat(3,predExtSingle,predExtComb);
Pext = squeeze(num2cell(predExt,1:2));

% Mean squared errors
Nstrat = 5;
MSE.m = nan(Ncues+Nstrat,1);
MSE.ci = nan(Ncues+Nstrat,2);
for ii = 1:Ncues+Nstrat
  if ii <= Ncues
    p = predExtSingle(:,:,ii);
  else
    p = predExtComb(:,:,ii-Ncues);
  end
  MSE.m(ii) = f_predErr(p);
  MSE.ci(ii,:) = bootci(1000,f_predErrA,p,actual);
end

% Bayesian Information Criteria
n = size(actual,1); % # conditions (no individual parameters for # listeners)
mc = ones(size(MSE.m)); % model complexity = # parameters; 1 sensitivity parameter per cue
mc(Ncues+1:end) = Ncues; % combinations -> all sensitivity parameters
mc(Ncues+(1:2)) = 2*Ncues; % weighted combinations -> all sensitivity parameters + weights
BIC = n*log(MSE.m) + mc*log(n);

W = [W(:),Wfix(:),cueStat];

end