function [benefit, weighted_SNR, weighted_bmld] = jelfs2011(target,interferer,varargin)
%JELFS2011 Predicted binaural advantage for speech in reverberant conditions
% Usage: [benefit weighted_SNR weighted_bmld] = jelfs2011(target,interferer,fs)
%
% Input parameters:
% target : Binaural target impulse respone (or stimulus)
% interfererer : Binaural interferer impulse response (or stimulus)
% Multiple interfering impulse responses MUST be
% concatenated, not added.
%
% Output parameters:
% benefit : spatial release from masking (SRM)in dB
% weighted_SNR : component of SRM due to better-ear listening (dB)
% weighted_bmld : component of SRM due to binaural unmasking (dB)
%
% JELFS2011(target,interferer,fs) computes the increase in speech
% intelligibility of the target when the target and interferer are
% spatially separated. They are preferably represented by their impulse
% responses, but can be represented by noise recordings of equivalent
% spectral shape emitted from the same source locations (using the same
% noise duration for target and interferer). The impulse responses are
% assumed to be sampled at a sampling frequency of fs Hz. If the
% modelled sources differ in spectral shape, this can be simulated by
% pre-filtering the impulse responses.
%
% [benefit, weighted_SNR, weighted_bmld]=JELFS2011(...) additionaly
% returns the benefit from the SII weighted SNR and the SII weighted BMLD.
%
% If target or interferer are cell-arrays, the HRTF data will be loaded. The first
% argument in the cell-array is the azimuth angle, and the second
% parameter is the database type. The elevation is set to zero.
% function.
%
% Example:
% --------
%
% The following code will load HRIRs from the 'kemar' database and
% compute the binaural speech intelligibility advantage for a target
% at 0 degrees and interferers at 300 and 90 degrees:
%
% jelfs2011({0,'kemar'},{[330 90],'kemar'})
%
% See also: culling2005_bmld, exp_jelfs2011
%
% References:
% J. Culling, S. Jelfs, and M. Lavandier. Mapping Speech Intelligibility
% in Noisy Rooms. In Proceedings of the 128th convention of the Audio
% Engineering Society, Convention paper 8050, 2010.
%
% S. Jelfs, J. Culling, and M. Lavandier. Revision and validation of a
% binaural model for speech intelligibility in noise. Hearing Research,
% 2011.
%
% M. Lavandier, S. Jelfs, J. Culling, A. Watkins, A. Raimond, and
% S. Makin. Binaural prediction of speech intelligibility in reverberant
% rooms with multiple noise sources. J. Acoust. Soc. Am.,
% 131(1):218--231, 2012.
%
%
% Url: http://amtoolbox.sourceforge.net/amt-0.10.0/doc/models/jelfs2011.php
% Copyright (C) 2009-2020 Piotr Majdak and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 0.10.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
definput.flags.ears={'both','left','right'};
definput.keyvals.fs=[];
definput.keyvals.pad=1024;
[flags,kv,fs]=ltfatarghelper({'fs'},definput,varargin);
% If target or interferer are cell arrays, load HRTFs.
if iscell(target)
X=SOFAload(fullfile(amt_basepath,'hrtf',mfilename,[target{2} '.sofa']));
idx=find(X.SourcePosition(:,1)==target{1} & X.SourcePosition(:,2)==0);
target=squeeze(X.Data.IR(idx,:,:))';
target=postpad(target,size(target,1)+kv.pad);
fs=X.Data.SamplingRate;
end;
if iscell(interferer)
azims=numel(interferer{1});
X=SOFAload(fullfile(amt_basepath,'hrtf',mfilename,[interferer{2} '.sofa']));
for ii=1:azims
idx(ii)=find(X.SourcePosition(:,1)==mod(interferer{1}(ii),360) & X.SourcePosition(:,2)==0);
end
interferer=shiftdim(X.Data.IR(idx,:,:),2);
interferer=postpad(interferer,size(interferer,1)+kv.pad);
fs2=X.Data.SamplingRate;
if fs2~=fs
error('%s: Mis-match between target and interferer sampling rate.',upper(mfilename));
end;
% Old code compatibility
if ndims(interferer)==3
s=size(interferer);
interferer=reshape(interferer,s(1)*s(2),s(3));
interferer=interferer/sqrt(azims);
end;
end;
if isempty(fs)
error('%s: You must specify the sampling rate, fs.',upper(mfilename));
end;
% Make sure that there is at least 1 erb per channel, and get
% the gammatone filters.
nchannels=ceil(freqtoerb(fs/2));
fc=erbspace(0,fs/2,nchannels);
[b,a] = gammatone(fc,fs,'complex');
effective_SNR = zeros(nchannels,1);
bmld_prediction = zeros(nchannels,1);
targ_f = 2*real(ufilterbankz(b,a,target));
int_f = 2*real(ufilterbankz(b,a,interferer));
for n = 1:nchannels
% Calculate the effect of BMLD
if flags.do_both
% cross-correlate left and right signal in channel n for both the
% target and the inteferer
[phase_t, coher_t] = do_xcorr(targ_f(:,n,1),targ_f(:,n,2),fs,fc(n));
[phase_i, coher_i] = do_xcorr( int_f(:,n,1), int_f(:,n,2),fs,fc(n));
bmld_prediction(n) = culling2005_bmld(coher_i,phase_t,phase_i,fc(n));
end
% Calculate the effect of better-ear SNR
left_SNR = sum(targ_f(:,n,1).^2) / sum(int_f(:,n,1).^2);
right_SNR = sum(targ_f(:,n,2).^2) / sum(int_f(:,n,2).^2);
if flags.do_both
SNR = max(left_SNR,right_SNR);
end;
if flags.do_left
SNR = left_SNR;
end;
if flags.do_right
SNR = right_SNR;
end
% combination
effective_SNR(n) = 10*log10(SNR);
end
% Calculate the SII weighting
weightings = siiweightings(fc);
if flags.do_both
weighted_bmld = sum(bmld_prediction.*weightings);
else
weighted_bmld = 0;
end
weighted_SNR = sum(effective_SNR.*weightings);
benefit = weighted_SNR + weighted_bmld;
end
% Helper function to do the cross-correlation, and extract the delay of
% the peak (output parameter 'phase' and the coherence at the peak).
function [phase, coherence] = do_xcorr(left, right, fs, fc)
% Use the LTFAT correlation function to avoid depending on xcorr, which
% is not in core of Matlab or Octave.
iacc = pxcorr(squeeze(left),squeeze(right),'normalize');
% Find the position of the largest correlation coefficient.
[coherence, delay_samp] = max(iacc);
if delay_samp > length(iacc)/2
delay_samp=delay_samp-length(iacc);
end
phase = fc*2*pi*delay_samp/fs;
end