This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).
function [outsig, fc] = lopezpoveda2001(insig,fs,varargin)
%lopezpoveda2001 Dual Resonance Nonlinear Filterbank
% Usage: outsig = lopezpoveda2001(insig,fs);
%
% LOPEZPOVEDA2001(insig,fs) computes the Dual Resonance Non-Linear (lopezpoveda2001)
% filterbank of the input signal insig sampled at fs Hz with channels
% specified by the center frequencies in fc. The lopezpoveda2001 is described in
% the paper Lopez-Poveda and Meddis (2001). The lopezpoveda2001 models the basilar
% membrane non-linearity.
%
% This version of the lopezpoveda2001 incoorperate the middle-ear filter used in
% Lopez-Poveda and Meddis (2001).
%
% The lopezpoveda2001 takes a lot of parameters which vary over frequency. Such a
% parameter is described by a 1 x2 vector [b a] and indicates
% that the value of the parameter at frequency fc can be calculated by
%
% 10^(b+a*log10(fc));
%
% The parameters are:
%
% 'flow',flow Set the lowest frequency in the filterbank to
% flow. Default value is 80 Hz.
%
% 'fhigh',fhigh Set the highest frequency in the filterbank to
% fhigh. Default value is 8000 Hz.
%
% 'basef',basef Ensure that the frequency basef is a centre frequency
% in the filterbank. The default value of [] means
% no default.
%
% 'middleear' Perform middleear filtering before the actual lopezpoveda2001
% is applied using the middleear filter specified in
% Lopez-Poveda and Meddis (2001), and compensate for
% the effect of the filter after lopezpoveda2001 filtering.
% This is the default.
%
% 'nomiddleear' No middle-ear filtering. Be carefull with this setting,
% as another scaling must then be perform to convert the
% input to stapes movement.
%
% 'bothparts' Compute both the linear and the non-linear path of
% the lopezpoveda2001. This is the default.
%
% 'linonly' Compute only the linear path.
%
% 'nlinonly' Compute only the non-linear path.
%
% 'lin_ngt',n Number of cascaded gammatone filter in the linear
% part, default value is 2.
%
% 'lin_nlp',n Number of cascaded lowpass filters in the linear
% part, default value is 4
%
% 'lin_gain',g Gain in the linear part, default value is [4.20405 ...
% .47909].
%
% 'lin_fc',fc Centre frequencies of the gammatone filters in the
% linear part. Default value is [-0.06762 1.01679].
%
% 'lin_bw',bw Bandwidth of the gammatone filters in the linear
% part. Default value is [.03728 .78563]
%
% 'lin_lp_cutoff',c
% Cutoff frequency of the lowpass filters in the
% linear part. Default value is [-0.06762 1.01679 ]
%
% 'nlin_ngt_before',n
% Number of cascaded gammatone filters in the
% non-linear part before the broken stick
% non-linearity. Default value is 3.
%
% 'nlin_ngt_after',n
% Number of cascaded gammatone filters in the
% non-linear part after the broken stick
% non-linearity. The default value of [] means to use the 'before'
% value.
%
% 'nlin_nlp',n Number of cascaded lowpass filters in the
% non-linear part. Default value is 3.
%
% 'nlin_fc_before',fc
% Center frequencies of the gammatone filters in the
% non-linear part before the broken stick
% non-linearity. Default value is [-0.05252 1.01650].
%
% 'nlin_fc_after',fc
% Center frequencies of the gammatone filters in the
% non-linear part after the broken stick
% non-linearity. The default value of [] means to use the 'before'
% value.
%
% 'nlin_bw_before',bw
% Bandwidth of the gammatone filters in the
% non-linear part before the broken stick
% non-linearity. Default value is [-0.03193 .77426 ].
%
% 'nlin_bw_after',w
% Bandwidth of the gammatone filters in the non-linear
% part after the broken stick non-linearity. The default
% value of [] means to use the 'before' value.
%
% 'nlin_lp_cutoff',c
% Cutoff frequency of the lowpass filters in the
% non-linear part. Default value is [-0.05252 1.01650 ].
%
% 'nlin_a',a The a coefficient for the broken-stick non-linearity. Default
% value is [1.40298 .81916 ].
%
% 'nlin_b',b The b coefficient for the broken-stick non-linearity. Default
% value is [1.61912 -.81867].
%
% 'nlin_c',c The c coefficient for the broken-stick non-linearity. Default
% value is [-.60206 0].
%
% 'nlin_d',d The d coefficient for the broken-stick non-linearity. Default
% value is 1.
%
% The output from lopezpoveda2001 can be conveniently visualized using the
% plotfilterbank function from LTFAT.
%
% See also: middleearfilter
%
% References:
% E. Lopez-Poveda and R. Meddis. A human nonlinear cochlear filterbank.
% J. Acoust. Soc. Am., 110:3107--3118, 2001.
%
% R. Meddis, L. O'Mard, and E. Lopez-Poveda. A computational algorithm
% for computing nonlinear auditory frequency selectivity. J. Acoust. Soc.
% Am., 109:2852--2861, 2001.
%
%
% Url: http://amtoolbox.sourceforge.net/amt-0.10.0/doc/models/lopezpoveda2001.php
% Copyright (C) 2009-2020 Piotr Majdak and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 0.10.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR: Morten Løve Jepsen
% Bugfixes by Marton Marschall 9/2008 and Katarina Egger 2011
% Cleanup by Peter L. Søndergaard.
%
% In comparison to the original code, the gammatone filters are computed
% by convolving the filter coefficients, instead of performing multiple
% runs of 'filter'. The lowpass filtering is still performed by mutliple
% runs through 'filter', as the linear-part lowpass filter turned out to
% be unstable when the coefficients was convolved.
if nargin<2
error('%s: Too few input parameters.',upper(mfilename));
end;
% Import the parameters from the arg_drnl.m function.
definput.import={'lopezpoveda2001'};
[flags,kv]=ltfatarghelper({'flow','fhigh'},definput,varargin);
% Expand the 'after' settings, if they are empty.
if isempty(kv.nlin_ngt_after)
kv.nlin_ngt_after=kv.nlin_ngt_before;
end;
if isempty(kv.nlin_fc_after)
kv.nlin_fc_after=kv.nlin_fc_before;
end;
if isempty(kv.nlin_bw_after)
kv.nlin_bw_after=kv.nlin_bw_before;
end;
% find the center frequencies used in the filterbank, 1 ERB spacing
fc = erbspacebw(kv.flow, kv.fhigh, kv.bwmul, kv.basef);
%% Convert the input to column vectors
nchannels = length(fc);
% Change f to correct shape.
[insig,siglen,nsigs,wasrow,remembershape]=comp_sigreshape_pre(insig,'lopezpoveda2001',0);
outsig=zeros(siglen,nchannels,nsigs);
% The current implementation of the lopezpoveda2001 works with
% dboffset=100, so we must change to this setting.
% The output is always the same, so there is no need for changing back.
% Obtain the dboffset currently used.
dboffset=dbspl(1);
% Switch signal to the correct scaling.
insig=gaindb(insig,dboffset-100);
%% Apply the middle-ear filter
if flags.do_middleear
me_fir = middleearfilter(fs);
insig = filter(me_fir,1,insig);
end;
if flags.do_jepsenmiddleear
me_fir = middleearfilter(fs,'jepsenmiddleear');
insig = filter(me_fir,1,insig);
end;
%% ---------------- main loop over center frequencies
% Handle the compression limiting in the broken-stick non-linearity
if ~isempty(kv.compresslimit)
fclimit=min(fc,kv.compresslimit);
else
fclimit=fc;
end;
% Sanity checking, some center frequencies may go above the Nyquest
% frequency
% Happens for lin_lp_cutoff
for ii=1:nchannels
% -------- Setup channel dependant definitions -----------------
lin_fc = polfun(kv.lin_fc,fc(ii));
lin_bw = polfun(kv.lin_bw,fc(ii));
lin_lp_cutoff = polfun(kv.lin_lp_cutoff,fc(ii));
lin_gain = polfun(kv.lin_gain,fc(ii));
nlin_fc_before = polfun(kv.nlin_fc_before,fc(ii));
nlin_fc_after = polfun(kv.nlin_fc_after,fc(ii));
nlin_bw_before = polfun(kv.nlin_bw_before,fc(ii));
nlin_bw_after = polfun(kv.nlin_bw_after,fc(ii));
nlin_lp_cutoff = polfun(kv.nlin_lp_cutoff,fc(ii));
% Expand a and b using the (possibly) limited fc
nlin_a = polfun(kv.nlin_a,fclimit(ii));
% b [(m/s)^(1-c)]
nlin_b = polfun(kv.nlin_b,fclimit(ii));
nlin_c = polfun(kv.nlin_c,fc(ii));
% Compute gammatone coefficients for the linear stage
[GTlin_b,GTlin_a] = gammatone(lin_fc,fs,kv.lin_ngt,lin_bw/audfiltbw(lin_fc),'classic');
% Compute coefficients for the linear stage lowpass, use 2nd order
% Butterworth.
[LPlin_b,LPlin_a] = butter(2,lin_lp_cutoff/(fs/2));
% Compute gammatone coefficients for the non-linear stage
%[GTnlin_b_before,GTnlin_a_before] = coefGtDRNL(nlin_fc_before,nlin_bw_before,...
% kv.nlin_ngt_before,fs);
[GTnlin_b_before,GTnlin_a_before] = gammatone(nlin_fc_before,fs,kv.nlin_ngt_before,...
nlin_bw_before/audfiltbw(nlin_fc_before),'classic');
[GTnlin_b_after,GTnlin_a_after] = gammatone(nlin_fc_after,fs,kv.nlin_ngt_after,...
nlin_bw_after/audfiltbw(nlin_fc_after),'classic');
% Compute coefficients for the non-linear stage lowpass, use 2nd order
% Butterworth.
[LPnlin_b,LPnlin_a] = butter(2,nlin_lp_cutoff/(fs/2));
% -------------- linear part --------------------------------
if flags.do_bothparts || flags.do_linonly
% Apply linear gain
y_lin = insig.*lin_gain;
% Gammatone filtering
y_lin = filter(GTlin_b,GTlin_a,y_lin);
% Multiple LP filtering
for jj=1:kv.lin_nlp
y_lin = filter(LPlin_b,LPlin_a,y_lin);
end;
else
y_lin = zeros(size(insig));
end;
% -------------- Non-linear part ------------------------------
if flags.do_bothparts || flags.do_nlinonly
% GT filtering before
y_nlin = filter(GTnlin_b_before,GTnlin_a_before,insig);
% Broken stick nonlinearity
if kv.nlin_d~=1
% Just to save some flops, make this optional.
y_nlin = sign(y_nlin).*min(nlin_a*abs(y_nlin).^kv.nlin_d, ...
nlin_b*(abs(y_nlin)).^nlin_c);
else
y_nlin = sign(y_nlin).*min(nlin_a*abs(y_nlin), ...
nlin_b*(abs(y_nlin)).^nlin_c);
end;
% GT filtering after
y_nlin = filter(GTnlin_b_after,GTnlin_a_after,y_nlin);
% then LP filtering
for jj=1:kv.nlin_nlp
y_nlin = filter(LPnlin_b,LPnlin_a,y_nlin);
end;
else
y_nlin = zeros(size(insig));
end;
outsig(:,ii,:) = reshape(y_lin + y_nlin,siglen,1,nsigs);
end;
function outpar=polfun(par,fc)
%outpar=10^(par(1)+par(2)*log10(fc));
outpar=10^(par(1))*fc^par(2);