THE AUDITORY MODELING TOOLBOX

This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).

View the help

Go to function

MOORE1997 - - Loudness model for stationary signals

Program code:

function [results] = moore1997(inSig,fs)
%MOORE1997 - Loudness model for stationary signals
%   Usage: [results] = moore1997(inSig,fs);
%   
%   Example:
%
%     fs = 32000; 
%     t = linspace(0,1,fs);
%     sig = sin(2*pi*1000*t).';
%     inSig = setdbspl(sig,100);  
%
%   Note that currently fs must be 32000 Hz.
%
%   References:
%     B. C. J. Moore, B. R. Glasberg, and T. Baer. A Model for the Prediction
%     of Thresholds, Loudness, and Partial Loudness. J. Audio Eng. Soc,
%     45(4):224--240, 1997.
%     
%
%   Url: http://amtoolbox.sourceforge.net/amt-0.10.0/doc/models/moore1997.php

% Copyright (C) 2009-2020 Piotr Majdak and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 0.10.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program.  If not, see <http://www.gnu.org/licenses/>.

% AUTHOR: Thomas Deppisch

    %% model
    fVec = 20:fs/2;
    data = data_glasberg2002('tfOuterMiddle1997','fieldType','free','fVec',fVec);

    % filter order as in glasberg2002
    order = 4096;
    % create FIR filter
    tfLinear = 10.^(data.tfOuterMiddle/10);
    outerMiddleFilter = fir2(order, linspace(0, 1, length(fVec)), tfLinear);
    earSig = filtfilt(outerMiddleFilter,1,inSig);   % why does filter(..) not work?

    % compute fft
    spect = fft(earSig);
    fftLen = length(spect);

    binWidth = fs/(fftLen+2); %  bandwidth in Hz represented by 1 fft frequency bin
    oneHz = (fftLen+2)/fs;  % number of frequency bins representing 1Hz

    numBins = round(fftLen/2+1);
    compInt = 2*abs(spect(1:numBins)).^2/(numBins*fs);  % psd
    compdB = 10*log10(compInt./(20e-6)^2); % intensity level in dBSPL
    compFq = linspace(0,fs/2,numBins);
    nPoints = length(compFq);
    compErb = fc2erbN(compFq);

    % calculate ERB numbers corresponding to ERB mid frequencies
    erbStep = 0.25;
    erbFcMin = 50;
    erbFcMax = 15000;
    erbNMin = fc2erbN(erbFcMin);
    erbNMax = fc2erbN(erbFcMax);
    erbN = erbNMin:erbStep:erbNMax;    % numbers of erb bands
    erbFc = erbN2fc(erbN);               % center frequency of erb bands

    erbLoFreq = erbN2fc(erbN-0.5); % lower limit of each ERB filter
    erbHiFreq = erbN2fc(erbN+0.5); % upper limit of each ERB filter

    %calculate intensity for each ERB (dB/ERB)
    for ii=1:length(erbFc)
        range = round(erbLoFreq(ii)*oneHz):round(erbHiFreq(ii)*oneHz);
        erbInt(ii) = sum(compInt(range));   % intensity sum in each erb
    end

    erbdB = 10*log10(erbInt./(20e-6)^2);   % intensity level in each erb using reference SPL of 20 uPa
    p511 = 4*1000/f2erb(1000);    % p for fc=1kHz and a level of 51dB (at 1kHz filters are symmetrical)
    erbdB2F = interp1([0 erbFc fs/2], [min(erbdB) erbdB min(erbdB)], compFq);   % map erbFc to compFq

    for e = 1:length(erbN)
        erb = f2erb(erbFc(e));
        p51 = 4*erbFc(e)/erb;
        intensity = 0;
        for comp = 1:nPoints
            g = (compFq(comp)-erbFc(e))/erbFc(e);
            if g<0
                p = p51 - 0.35*(p51/p511) * (erbdB2F(comp)-51);
            else
                p = p51;
            end
            g = abs(g);
            w = (1+p*g)*exp(-p*g);
            intensity = intensity+w*compInt(comp);  %intensity per erb
        end
        eL(e) = intensity;
    end
    results.eLdB = 10*log10(eL./(20e-6)^2); % get dB SPL (20uPa reference)
    results.erbN = erbN;
    
    %% calculating specific loudness 
    dataSL = data_glasberg2002('specLoud','fVec',erbFc);
    tQdB = dataSL.tQ;
    tQ = 10.^(tQdB./10);
    tQdB500 = dataSL.tQ500;
    gdB = dataSL.g;    % low level gain in cochlea amplifier
    g = 10.^((tQdB500-tQdB)/10);
    a = dataSL.a;    % parameter for linearization around absolute threshold
    alpha = dataSL.alpha;    % compressive exponent
    c = dataSL.c; % constant to get loudness scale to sone

    specLoud = zeros(size(eL));
    specLoud1 = c*(2*eL./(eL+tQ)).^1.5 .*((g.* eL + a).^alpha-a.^alpha);
    specLoud2 = c * ((g .*eL + a).^alpha - a.^alpha);
    specLoud3 = c*(eL./1.04e6).^0.5;
    specLoud(eL<tQ) = specLoud1(eL<tQ);
    specLoud(eL<=10^10 & eL>tQ) = specLoud2(eL<=10^10 & eL>tQ);
    specLoud(eL>10^10) = specLoud3(eL>10^10);

    %% monaural/binaural loudness (= instantaneous loudness), short term loudness (STL), l