This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).
function [ANresp,fc,varargout] = zilany2014(spl,stim,fsstim,varargin)
%ZILANY2014 Auditory nerve (AN) model
% Usage: [ANresp,fc] = zilany2014(lvl,stim,fsstim);
% [ANresp,fc,vihc,psth] = zilany2014(lvl,stim,fsstim);
%
% Input parameters:
% spl : Sound pressure level (SPL; re 20e-6 Pa) of stimulus in dB
% stim : Pressure waveform of stimulus (timeseries)
% fsstim : Sampling frequency of stimulus
%
% Output parameters:
% ANresp : AN response in terms of the estimated instantaneous mean
% spiking rate (incl. refractoriness) in nf different AN
% fibers spaced equally on the BM
% fc : Frequency vector containing the nf center frequencies
% vihc : Output from inner hair cells (IHCs) in Volts
% psth : Spike histogram
%
% ZILANY2014(...) returns modeled responses of multiple AN fibers tuned to
% various characteristic frequencies characterstic frequencies evenly spaced
% along ERB scale (see audspace).
%
% Please cite the references below if you use this model.
%
% This function takes the following optional key/value pairs:
%
% 'flow',flow Lowest centre frequency. Default value is 100.
%
% 'fhigh',fhigh Highest centre frequency. Default value is 16000.
%
% 'nfibers',nf Number of fibers between lowest and highest
% frequency. The fibers will be equidistantly spaced
% on the basilar membrane. Default value is 500.
%
% 'fsmod',fsmod Model sampling rate. It is possible to run the model
% at a range of fsmod between 100 kHz and 500 kHz.
% Default value is 200kHz for cats and 100kHz for humans.
%
% 'fiberType',fT Type of the fiber based on spontaneous rate (SR) in spikes/s
% fT=1 for Low SR; fT=2 for Medium SR (default);
% fT=3 for High SR.
%
% 'cohc',cohc OHC scaling factor: 1 denotes normal OHC function (default);
% 0 denotes complete OHC dysfunction.
%
% 'cihc',cihc IHC scaling factor: 1 denotes normal IHC function (default);
% 0 denotes complete IHC dysfunction.
%
% 'nrep',nrep Number of repetitions for the mean rate,
% rate variance & psth calculation. Default is 1.
%
% ZILANY2014 accepts the following flag:
%
% 'human' Use model parameters for humans. This is the default.
%
% 'cat' Use model parameters for cats.
%
% 'fixedFGn' Fractional Gaussian noise will be the same in every
% simulation. This is the default.
%
% 'varFGn' Fractional Gaussian noise will be different in every
% simulation.
%
% 'approxPL' Use approxiate implementation of the power-law
% functions. This is the default.
%
% 'actualPL' Use actual implementation of the power-law functions.
%
%
% Demos: demo_zilany2014
%
% References:
% M. S. A. Zilany, I. C. Bruce, and L. H. Carney. Updated parameters and
% expanded simulation options for a model of the auditory periphery. The
% Journal of the Acoustical Society of America, 135(1):283--286, Jan.
% 2014.
%
% M. Zilany, I. Bruce, P. Nelson, and L. Carney. A phenomenological model
% of the synapse between the inner hair cell and auditory nerve:
% Long-term adaptation with power-law dynamics. J. Acoust. Soc. Am.,
% 126(5):2390 -- 2412, 2009.
%
%
% Url: http://amtoolbox.sourceforge.net/amt-0.10.0/doc/models/zilany2014.php
% Copyright (C) 2009-2020 Piotr Majdak and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 0.10.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR: code provided by Muhammad Zilany, AMT compatibility adapted by Robert Baumgartner
if nargin<3
error('%s: Too few input parameters.',upper(mfilename));
end;
% Define input flags and values
definput.flags.species = {'human','cat'};
definput.flags.noiseType = {'fixedFGn','varFGn'};
definput.flags.powerLawImp = {'approxPL','actualPL'};
definput.keyvals.flow = 100;
definput.keyvals.fhigh = 16000;
definput.keyvals.nfibers = 500;
definput.keyvals.fsmod = 100e3;
definput.keyvals.fiberType = 2;
definput.keyvals.cohc = 1;
definput.keyvals.cihc = 1;
definput.keyvals.nrep = 1;
[flags,kv] = ltfatarghelper({'flow','fhigh','nfibers','fsmod',...
'fiberType','cohc','cihc','nrep'},definput,varargin);
% Species settings
if flags.do_cat
kv.fsmod = max(kv.fsmod,200e3);
end
% Stimulus settings
stim = resample(stim,kv.fsmod,fsstim); % stim fs = mod fs
idnz = stim ~= 0; % ignore pauses
lvlref = 20*log10(1/20e-6); % Reference level: 20 micro Pa
stim(idnz) = setdbspl(stim(idnz),spl,'dboffset',lvlref); % Calibrate level
stim = stim(:)'; % stim must be a row vector
% characteristic frequencies evenly spaced along ERB scale
fc = audspace(kv.flow,kv.fhigh,kv.nfibers,'erb');
% tdres is the binsize in seconds, i.e., the reciprocal of the sampling rate
tdres = 1/kv.fsmod;
% reptime is the time between stimulus repetitions in seconds; -> set
% twice the duration of stim
reptime = (2*length(stim))/kv.fsmod;
% species is either "cat" (1) or "human" (2): "1" for cat and "2" for human
species = flags.do_human+1;
% noiseType is for fixed fGn (noise will be same in every simulation) or variable fGn: "0" for fixed fGn and "1" for variable fGn
noiseType = flags.do_varFGn + 0;
% implnt is for "approxiate" or "actual" implementation of the power-law functions: "0" for approx. and "1" for actual implementation
implnt = flags.do_actualPL + 0;
% Call AN model and loop for all fibers tuned to different CFs
vihc = zeros(kv.nfibers,round(reptime*kv.fsmod));
ANresp = vihc;
psth = vihc;
for jj = 1:kv.nfibers
% Call IHC model (mex'ed C model)
vihc(jj,:) = comp_zilany2014IHC(stim,fc(jj),kv.nrep,tdres,reptime,kv.cohc,kv.cihc,species);
% Call Synapse model
[ANresp(jj,:),varrate,psth(jj,:)] = comp_zilany2014Synapse(...
vihc(jj,:),fc(jj),kv.nrep,tdres,kv.fiberType,noiseType,implnt);
end
if nargout >= 3
varargout{1} = vihc;
if nargout == 4
varargout{2} = psth;
end
end
% AUTHOR notes:
% vihc = model_IHC(pin,CF,nrep,tdres,reptime,kv.cohc,kv.cihc,flags.do_human+1);
% [meanrate,varrate,psth] = model_Synapse(vihc,CF,nrep,tdres,kv.fiberType,flags.do_varFGn,flags.do_actualPL);
%
% Output parameters:
% vihc is the inner hair cell (IHC) potential (in volts)
% meanrate is the estimated instantaneous mean rate (incl. refractoriness)
% varrate is the estimated instantaneous variance in the discharge rate (incl. refractoriness)
% psth is the peri-stimulus time histogram
%
% Input parameters:
% pin is the input sound wave in Pa sampled at the appropriate sampling rate (see instructions below)
% CF is the characteristic frequency of the fiber in Hz
% nrep is the number of repetitions for the mean rate, rate variance & psth calculation
% tdres is the binsize in seconds, i.e., the reciprocal of the sampling rate (see instructions below)
% reptime is the time between stimulus repetitions in seconds - NOTE should be equal to or longer than the duration of pin
% cohc is the OHC scaling factor: 1 is normal OHC function; 0 is complete OHC dysfunction
% cihc is the IHC scaling factor: 1 is normal IHC function; 0 is complete IHC dysfunction
% species is either "cat" (1) or "human" (2): "1" for cat and "2" for human
% fiberType is the type of the fiber based on spontaneous rate (SR) in spikes/s - "1" for Low SR; "2" for Medium SR; "3" for High SR
% noiseType is for fixed fGn (noise will be same in every simulation) or variable fGn: "0" for fixed fGn and "1" for variable fGn
% implnt is for "approxiate" or "actual" implementation of the power-law functions: "0" for approx. and "1" for actual implementation
%
% Example:
%
% This example shows how to model a normal fiber of high spontaneous rate
% (normal OHC & IHC function) with a CF of 1 kHz, for 10 repititions
% and a sampling rate of 100 kHz, for a repetition duration of 200 ms,
% with a fixed fractional Gaussian noise (fGn) and also with approximate
% implementation of the power-law functions in the synapse model. :::
%
% vihc = model_IHC(pin,1e3,10,1/100e3,0.200,1,1,1); **requires 8 input arguments
% [meanrate,varrate,psth] = model_Synapse(vihc,1e3,10,1/100e3,3,0,0); **requires 7 input arguments
%