This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).
function [ varargout ] = baumgartner2013_pmv2ppp( p,varargin )
%baumgartner2013_pmv2ppp PMV to PPP conversion
% Usage: [ qe,pe,eb ] = baumgartner2013_pmv2ppp( p,tang,rang );
% [ qe,pe,eb ] = baumgartner2013_pmv2ppp( p,tang,rang,exptang );
%
% Input parameters:
% p : prediction matrix (response PMVs)
% tang : possible polar target angles. As default, ARI's MSP
% polar angles in the median SP is used.
% rang : polar angles of possible response angles.
% As default regular 5 deg.-sampling is used (-30:5:210).
%
% Output parameters:
% qe : quadrant error rate
% pe : local polar RMS error in degrees
% eb : elevation bias in degrees; QEs and up-rear quadrant excluded
%
% BAUMGARTNER2013_PMV2PPP(...) retrieves commonly used PPPs (Psychoacoustic performance
% parameters) for sagittal-plane (SP) localization like quadrant error
% (QEs), local polar RMS error (PE), and elevation bias (EB) from
% response PMVs (probability mass vectors) predicted by a localization
% model. PPPs are retreived either for a specific polar target angle or as
% an average across all available target angles. The latter is the
% default.
%
% BAUMGARTNER2013_PMV2PPP needs the following optional parameter in order to retrieve
% the PPPs for a specific (set of) target angles:
%
% 'exptang', exptang experimental polar target angles
%
% BAUMGARTNER2013_PMV2PPP accepts the following flag:
%
% 'print' Display the outcomes.
%
% Example:
% ---------
%
% To evaluate chance performance of QE and PE use :
%
% [qe,pe] = baumgartner2013_pmv2ppp(ones(49,49));
%
% References:
% R. Baumgartner. Modeling sagittal-plane sound localization with the
% application to subband-encoded head related transfer functions.
% Master's thesis, University of Music and Performing Arts, Graz, June
% 2012.
%
% R. Baumgartner, P. Majdak, and B. Laback. Assessment of Sagittal-Plane
% Sound Localization Performance in Spatial-Audio Applications,
% chapter 4, pages 93--119. Springer-Verlag GmbH, 2013.
%
%
% Url: http://amtoolbox.sourceforge.net/amt-0.10.0/doc/modelstages/baumgartner2013_pmv2ppp.php
% Copyright (C) 2009-2020 Piotr Majdak and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 0.10.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR : Robert Baumgartner
definput.flags.print = {'noprint','print'};
definput.keyvals.rang=-30:5:210;
definput.keyvals.tang=[-30:5:70,80,100,110:5:210];
definput.keyvals.exptang=[];
[flags,kv]=ltfatarghelper({'tang','rang','exptang'},definput,varargin);
if size(p,1) == 49 % rang: default for baumgartner2013
kv.rang=-30:5:210;
end
p = p./repmat(sum(p),length(kv.rang),1); % ensure probability mass vectors
tang = kv.tang(:);
rang = kv.rang(:);
nt = length(tang);
qet = zeros(nt,1); % QE for each target angle
pet = zeros(nt,1); % PE for each target angle
ebt = zeros(nt,1); % EB for each target angle
isnotuprear = false(nt,1);
for ii = 1:nt % for all target positions
d = tang(ii)-rang; % wraped angular distance between tang & rang
iduw = (d < -180) | (180 < d); % 180°-unwrap indices
d(iduw) = mod(d(iduw) + 180,360) - 180; % 180 deg unwrap
d = abs(d); % absolut distance
qet(ii) = sum( p(d>=90,ii) );
pc = p(d<90,ii); % pmv for conditional probability excluding QEs
pc = pc/sum(pc); % normalization to sum=1
pet(ii) = sqrt( sum( pc .* (d(d<90)).^2 )); % RMS of expected difference
if tang(ii) < 80
ebt(ii) = sum( pc .* rang(d<90) ) - tang(ii); % expectancy value of rang - tang
isnotuprear(ii) = true;
elseif tang(ii) > 180 % elevation instead of polar angle
ebt(ii) = -( sum( pc .* rang(d<90) ) - tang(ii) );
else % exclude up-rear quadrant
isnotuprear(ii) = false;
end
end
ebt = ebt(isnotuprear);
if ~isempty(kv.exptang)
qetb = (qet(1)+qet(end))/2; % boundaries for extang
petb = (pet(1)+pet(end))/2;
ebtb = (ebt(1)+ebt(end))/2;
extang = tang(:); % extended tang for targets outside
exqet = qet(:);
expet = pet(:);
expb = ebt(:);
if min(extang)>-90;
extang = [-90; extang];
exqet = [qetb; exqet];
expet = [petb; expet];
expb = [ebtb; expb];
isnotuprear = [true;isnotuprear];
end
if max(extang)<270;
extang = [extang; 270];
exqet = [exqet; qetb];
expet = [expet; petb];
expb = [expb; ebtb];
isnotuprear = [isnotuprear;true];
end
qet = interp1(extang,exqet,kv.exptang);
pet = interp1(extang,expet,kv.exptang);
excluderu = kv.exptang < 80 | kv.exptang > 180;
ebt = interp1(extang(isnotuprear),expb,kv.exptang(excluderu));
end
qe = mean(qet)*100;
pe = mean(pet);
eb = mean(ebt);
varargout{1} = qe;
varargout{2} = pe;
varargout{3} = eb;
if flags.do_print
fprintf('Quadrant errors (%%) \t\t %4.1f \n',qe)
if nargout > 1
fprintf('Local polar RMS error (deg) \t %4.1f \n',pe)
end
if nargout > 2
fprintf('Local polar bias (deg) \t\t %4.1f \n',eb)
end
end
end