This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).
function [gp,gfc] = baumgartner2014_gradientextraction(mp,fc,varargin)
%baumgartner2014_gradientextraction - Extraction of positive spectral gradients
% Usage: [gp,gfc] = baumgartner2014_gradientextraction(mp,fc)
%
% Input parameters:
% mp : spectral magnitude profile in dB
% fc : center frequencies
%
% Output parameters:
% gp : positive spectral gradient profile
% gfc : center frequencies of gradient profile
%
% BAUMGARTNER2014_GRADIENTEXTRACTION(...) is a spectral cue extractor
% inspired by functionality of dorsal cochlear nucleus in cats.
%
% BAUMGARTNER2014_GRADIENTEXTRACTION accepts the following optional parameters:
%
% 'c2',c2 Inhibitory coupling between type II mpd type IV neurons.
% Default is 1.
% 'c4',c4 Inhibitory coupling between AN and type IV neuron.
% Default is 1.
% 'spacing',sp Tonotopical spacing between type IV mpd II neurons in ERBs.
% Default is 1 ERB.
%
% BAUMGARTNER2014_GRADIENTEXTRACTION accepts the following flags:
%
% 'positive' Perform positive spectral gradient extraction (default).
% 'negative' Perform negative spectral gradient extraction.
% 'both' Perform spectral gradient extraction.
%
% References:
% R. Baumgartner, P. Majdak, and B. Laback. Modeling sound-source
% localization in sagittal planes for human listeners. The Journal of the
% Acoustical Society of America, 136(2):791--802, 2014.
%
%
% Url: http://amtoolbox.sourceforge.net/amt-0.10.0/doc/modelstages/baumgartner2014_gradientextraction.php
% Copyright (C) 2009-2020 Piotr Majdak and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 0.10.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR: Robert Baumgartner
%% Parameter Settings
definput.keyvals.c2 = 1;
definput.keyvals.c4 = 1;
definput.keyvals.spacing = 1;
definput.flags.gradient = {'positive','negative','both'};
[flags,kv]=ltfatarghelper({'c2','c4','spacing'},definput,varargin);
% if not(exist('c2','var'))
% c2 = 1; % inhibitory coupling between type II mpd type IV neurons
% end
% c4 = 1; % coupling between AN and type IV neuron
% dilatation = 1; % of tonotopical 1-ERB-spacing between type IV mpd II neurons
%% Calculations
Nb = size(mp,1); % # auditory bands
erb = audfiltbw(fc);
dgpt2 = round(mean(erb(2:end)./diff(fc))*kv.spacing); % tonotopical distance between type IV mpd II neurons
gp = zeros(Nb-dgpt2,size(mp,2),size(mp,3),size(mp,4),size(mp,5)); % type IV output
for b = 1:Nb-dgpt2
gp(b,:,:,:,:) = kv.c4 * mp(b+dgpt2,:,:,:,:) - kv.c2 * mp(b,:,:,:,:);
end
if flags.do_positive
gp(gp<0) = 0; % gp = (gp + c2*abs(gp))/2;
elseif flags.do_negative
gp(gp>0) = 0;
end
% gfc = fc(dgpt2+1:end); % same as AN
gfc = sqrt(fc(1:Nb-dgpt2).*fc(dgpt2+1:end)); % use geometric mean
end