This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).
function [spikeRatePerNeuron,spikeRatePerBin] = ...
kelvasa2015_anbinning(APvec,sigLengthSec,...
varargin)
%KELVASA2015_ANBINNING AN and time binning from Kelvasa and Dietz 2015 binaural model
% Usage: [spikeRatePerNeuron,spikeRatePerBin] = ...
% kelvasa2015_anbinning(APvec,sigLengthSec);
%
% Input parameters:
% APvec : N x 2 matrix of AN spikes with Nx1 holding indices
% of the spiking neuron and Nx2 holding corresponding
% spike time in seconds.
%
% sigLengthSec : length of input signal in seconds
%
% Output parameters:
% spikeRatePerNeuron: N x M matrix of AN spike rates in spikes/second
% with N being the number of user defined AN
% fibers and M being the number of time windows.
%
% spikeRatePerBin : N x M matrix of AN spike rates in spikes/second
% with N being the number of user defined AN fibe
% bands and M being the number of time windows.
%
% KELVASA2015_anbinning(APvec,sigLengthSec,varargin) bins auditory nerve
% spike times over a given population of AN fibers into user defined AN
% frequency bands and time bins as detailed in (Kelvasa & Dietz (2015))
%
% References:
% D. Kelvasa and M. Dietz. Auditory model-based sound direction
% estimation with bilateral cochlear implants. Trends in Hearing,
% 19:2331216515616378, 2015.
%
%
% Url: http://amtoolbox.sourceforge.net/amt-0.10.0/doc/modelstages/kelvasa2015_anbinning.php
% Copyright (C) 2009-2020 Piotr Majdak and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 0.10.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% Authors:
% Daryl Kelvasa (daryl.kelvasa@uni-oldenburg.de) 2016
% Mathias Dietz (mdietz@uwo.ca) 2016
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Check input paramters
if nargin<3
error('%s: Too few input parameters.',upper(mfilename));
end;
%Retrieve and compute model paramters
definput.import={'kelvasa2015'};
[~,kv] = ltfatarghelper({},definput,varargin);
%% Main code
%initialize variables
numWin = ceil(sigLengthSec/kv.timeWindowSec);
winEdges = linspace(0,sigLengthSec,numWin+1);
spikeRatePerNeuron = zeros(kv.N_nervecells,numWin);
spikeRatePerBin = zeros(kv.numBin,numWin);
if ~isempty(APvec)
[~,ind] = histc(APvec(:,2),winEdges);
ind(ind==numWin+1) = numWin;
for win = 1 : numWin
APwin = APvec(ind == win,:);
[H, ~] = histc(APwin(:,1),1:kv.N_nervecells);
clear APwin
spkRate = H./kv.timeWindowSec;
spikeRatePerNeuron(:,win) = spkRate;
spikeRatePerBin(:,win) = mean(spkRate(kv.binPosInd),2);
end
end
end