This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).
function [ la,le,ci ] = langendijk2002_likelihood( p,rang,tang,target,response )
%langendijk2002_likelihood Likelihood estimation for evaluating model performance
% Usage: [la,le,ci] = langendijk2002_likelihood(p,rang,tang,target,response)
%
% Input parameters:
% p : pdf matrix
% rang : polar angles of possible response angles
% tang : polar angles of possible target angles
% target : target polar angles of localization test
% response : response polar angles of localization test
%
% Output parameters:
% la : actual likelihood
% le : expected likelihood
% ci : 99% confidence interval for expected likelihood
%
% XXX Describe the function.
%
% See also: plot_langendijk2002_likelihood, langendijk2002
%
% References:
% E. Langendijk and A. Bronkhorst. Contribution of spectral cues to human
% sound localization. J. Acoust. Soc. Am., 112:1583--1596, 2002.
%
%
% Url: http://amtoolbox.sourceforge.net/amt-0.10.0/doc/modelstages/langendijk2002_likelihood.php
% Copyright (C) 2009-2020 Piotr Majdak and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 0.10.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR : Robert Baumgartner
nt=length(target);
% pa represents pdf values of actual responses
pa=interp2([-90;rang(:);270],[-90;tang(:);270], ...
[zeros(1,size(p,2)+2);[zeros(size(p,1),1),p,zeros(size(p,1),1)];...
zeros(1,size(p,2)+2)] ,target,response);
la=-2*sum(log(pa))*55/nt; % actual likelihood
% random generator
lex=zeros(100,1);
for ind=1:100
pe=zeros(size(target));
for ind1=1:nt
post=find(tang>=target(ind1),1); % target position
% post=randi(size(p,2),1);
posr = discreteinvrnd(p(:,post),1,1);
pe(ind1)=p(posr,post);
end
lex(ind)=-2*sum(log(pe))*55/nt;
end
le=mean(lex); % expected likelihood
err=2.58*std(lex);
ci=[le-err le+err]; % confidence interval
function [ X ] = discreteinvrnd(p,m,n)
% DISCRETEINVRND implements an inversion method for a discrete distribution
% with probability mass vector p and dimensions m,n
% Usage: [ X ] = discreteinvrnd(p,m,n)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% AUTHOR : Robert Baumgartner, OEAW
% latest update: 2010-07-21
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
X = zeros(m,n);
for i = 1:m*n
c = cumsum(p);
u = max(c)*rand;
X(i) = find(u < c ,1);
end