THE AUDITORY MODELING TOOLBOX

This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).

View the help

Go to function

ziegelwanger2014_offaxis - Off-axis time-of-arrival model

Program code:

function y=ziegelwanger2014_offaxis(p,x)
%ziegelwanger2014_offaxis   Off-axis time-of-arrival model
%   Usage: y=ziegelwanger2014_offaxis(p,x) 
%
%   Input parameters:
%       p: off-axis time-of-arrival model parameters [SI-units]
%       x: HRTF direction (azimuth,elevation) [rad]
%   Output para eters:
%       y: time-of-arrival [s]
%
%   toa=ZIEGELWANGER2014_OFFAXIS(p,x) calculates time-of-arrivals for given
%   model parameters (p) and directions (x) with an off-axis time-of-arrival
%   model.
%
%   See also: ziegelwanger2014, ziegelwanger2014_onaxis,
%   data_ziegelwanger2014, exp_ziegelwanger2014
%
%   References:
%     H. Ziegelwanger and P. Majdak. Modeling the direction-continuous
%     time-of-arrival in head-related transfer functions. J. Acoust. Soc.
%     Am., 135:1278--1293, 2014.
%     
%
%   Url: http://amtoolbox.sourceforge.net/amt-0.10.0/doc/modelstages/ziegelwanger2014_offaxis.php

% Copyright (C) 2009-2020 Piotr Majdak and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 0.10.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program.  If not, see <http://www.gnu.org/licenses/>.

% AUTHOR: Harald Ziegelwanger, Acoustics Research Institute, Vienna,
% Austria

r=p(1); %............. sphere radius [m]
xM=p(2); %............ x-coordinate of the sphere center [m]
yM=p(3); %............ y-coordinate of the sphere center [m]
zM=p(4); %............ z-coordinate of the sphere center [m]
delay=p(5); %......... constant dely [s]
phi_ear=p(6); %....... position of the ear (azimuth angle) [rad]
theta_ear=p(7); %..... position of the ear (elevation angle) [rad]

M=sqrt(xM^2+yM^2+zM^2);

beta=acos(-cos(x(:,2)).*(xM*cos(x(:,1))+yM*sin(x(:,1)))-zM*sin(x(:,2)));
s2=-r+M*cos(beta)+sqrt(r^2+M^2*cos(beta).^2+2*M*r);
gamma=pi-beta-acos((2*M^2+2*M*r-2*r*s2-s2.^2)/(2*M^2+2*M*r));
if M==0
    s1=zeros(size(x,1),1);
else
    s1=M*cos(beta)./(2*(M+r).*tan(gamma/2));
end

y=1/340*((r* ...
    ((sign(sin(theta_ear).*sin(x(:,2))+cos(theta_ear).*cos(x(:,2)).*cos(phi_ear-x(:,1)))/2+0.5).* ...
    (1-sin(theta_ear).*sin(x(:,2))-cos(theta_ear).*cos(x(:,2)).*cos(phi_ear-x(:,1)))+ ...
    (-sign(sin(theta_ear).*sin(x(:,2))+cos(theta_ear).*cos(x(:,2)).*cos(phi_ear-x(:,1)))/2+0.5).* ...
    (1+acos(sin(theta_ear).*sin(x(:,2))+cos(theta_ear)*cos(x(:,2)).*cos(phi_ear-x(:,1)))-pi/2))) ...
    +s1+s2) ...
    +delay-(M+r)/340;

end