THE AUDITORY MODELING TOOLBOX

Applies to version: 0.9.7

View the help

Go to function

ZIEGELWANGER2013ONAXIS - XXX

Program code:

function y=ziegelwanger2013onaxis(p,x)
%ZIEGELWANGER2013ONAXIS XXX
%   Usage: y=ziegelwanger2013onaxis(p,x)
%
%   Input parameters:
%       p: on-axis model parameters [SI-units]
%       x: HRTF direction (azimuth,elevation) [rad]
%   Output parameters:
%       y: time-of-arrival [s]
%
%   toa=ZIEGELWANGER2013ONAXIS(p,x) calculates time-of-arrivals (TOAs) for
%   given model parameters (p) and directions (x) with an on-axis
%   time-of-arrival model.
%
%   See also: ziegelwanger2013, ziegelwanger2013offaxis,
%   data_ziegelwanger2013, exp_ziegelwanger2013
%
%   References:
%     P. Majdak and H. Ziegelwanger. Continuous-direction model of the
%     broadband time-of-arrival in the head-related transfer functions. In
%     ICA 2013 Montreal, volume 19, page 050016, Montreal, Canada, 2013. ASA.
%     
%     H. Ziegelwanger and P. Majdak. Modeling the broadband time-of-arrival
%     of the head-related transfer functions for binaural audio. In
%     Proceedings of the 134th Convention of the Audio Engineering Society,
%     page 7, Rome, 2013.
%     
%
%   Url: http://amtoolbox.sourceforge.net/amt-0.9.7/doc/binaural/ziegelwanger2013onaxis.php

% Copyright (C) 2009-2014 Peter L. Søndergaard and Piotr Majdak.
% This file is part of AMToolbox version 0.9.7
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program.  If not, see <http://www.gnu.org/licenses/>.

% AUTHOR: Harald Ziegelwanger, Acoustics Research Institute, Vienna,
% Austria
    
r=p(1); %............. sphere radius [m]
phi_ear=p(2); %....... position of the ear (azimuth angle) [rad]
theta_ear=p(3); %..... position of the ear (elevation angle) [rad]
delay=p(4); %......... constant delay [s]

y=r/343.*( ...
       (sign(sin(theta_ear).*sin(x(:,2))+cos(theta_ear).*cos(x(:,2)).*cos(phi_ear-x(:,1)))/2+0.5).* ...
       (1-sin(theta_ear).*sin(x(:,2))-cos(theta_ear).*cos(x(:,2)).*cos(phi_ear-x(:,1)))+ ...
       (-sign(sin(theta_ear).*sin(x(:,2))+cos(theta_ear).*cos(x(:,2)).*cos(phi_ear-x(:,1)))/2+0.5).* ...
       (1+acos(sin(theta_ear).*sin(x(:,2))+cos(theta_ear)*cos(x(:,2)).*cos(phi_ear-x(:,1)))-pi/2))+delay-r/343;
end