function [waveVamp, waveVlat] = roenne2012(stim,fsstim,stim_level,varargin)
%ROENNE2012 Simulates an ABR to any given stimulus
% Usage: [waveVamp, waveVlat] = roenne2012(flag)
%
% Output parameters:
% waveVamp : Amplitude of simulated ABR wave V.
% waveVlat : Latency of simulated ABR wave V peak.
%
% ROENNE2012(stim,fsstim,stim_level) returns simulated ABR wave V
% latency and amplitude. The stimulus stim must be defined in pascals
% and calibrated so a pure tone stimulus has an RMS value of 1. Transient
% stimuli (which this model is designed to simulate) has to be calibrated
% in peSPL acoustically. This is *not* the same as "just" having a
% numerical peak to peak value of the same level as the pure tone. For
% calibrated click, chirps and tone bursts, see ROENNE2012CLICK,
% ROENNE2012TONEBURSTS and ROENNE2012CHIRP.
%
% The parameter fsstim gives the sampling frequency of the input
% stimulus, and stim_level the level. As input is calibrated to an
% RMS-value of 1, a stimulus level in (pe)SPL has to be set.
%
% The flag may be one of:
%
% 'plot' Plot the output. See PLOT_ROENNE2012.
%
% 'noplot' Do not plot. This is the default.
%
% 'fsmod',fsmod Auditory nerve model sampling frequency.
% Default value is 200000.
%
% 'flow',flow Auditory nerve model lowest center frequency.
% Default value is 100 Hz.
%
% 'fhigh',fhigh Auditory nerve model highest center frequency.
% Default value is 16000 Hz.
%
% 'min_modellength',mn
% Minimum length of modelling measured in ms.
% Default value is 40.
%
% Examples:
% ---------
%
% Simulates a click evoked ABR (c0 of the loaded file is a click). Note
% that the click loaded in this example starts after 15ms. The simulated
% wave V latency is thus also 15 ms "late" :
%
% stim=data_elberling2010('stim');
% roenne2012(stim.c0,30e3,60,'plot')
%
% ---------
%
% Please cite Rønne et al. (2012) and Zilany and Bruce (2007) if you use
% this model.
%
% References:
% C. Elberling, J. Calloe, and M. Don. Evaluating auditory brainstem
% responses to different chirp stimuli at three levels of stimulation. J.
% Acoust. Soc. Am., 128(1):215-223, 2010.
%
% F. Roenne, J. Harte, C. Elberling, and T. Dau. Modeling auditory evoked
% brainstem responses to transient stimuli. J. Acoust. Soc. Am., accepted
% for publication, 2012.
%
% M. S. A. Zilany and I. C. Bruce. Representation of the vowel (epsilon)
% in normal and impaired auditory nerve fibers: Model predictions of
% responses in cats. J. Acoust. Soc. Am., 122(1):402-417, jul 2007.
%
%
% Url: http://amtoolbox.sourceforge.net/amt-0.9.7/doc/monaural/roenne2012.php
% Copyright (C) 2009-2014 Peter L. Søndergaard and Piotr Majdak.
% This file is part of AMToolbox version 0.9.7
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% Define input flags
definput.flags.plot = {'plot','noplot'};
definput.keyvals.fsmod=200000;
definput.keyvals.flow = 100;
definput.keyvals.fhigh = 16000;
definput.keyvals.min_modellength=40;
[flags,kv] = ltfatarghelper({},definput,varargin);
%% Init
[ur,fs] = data_roenne2012;
% Assure minimum model length of 40ms
if length(stim)/fsstim < kv.min_modellength/1000
stim_temp = zeros(1, fsstim*kv.min_modellength/1000);
stim_temp(1:length(stim)) = stim;
stim = stim_temp;
end
%% ABR model
% call AN model, note that lots of extra outputs are possible
[ANout,vFreq] = zilany2007humanized(stim_level, stim, fsstim, kv.fsmod, 'flow',kv.flow, 'fhigh',kv.fhigh);
% subtract 50 due to spontaneous rate
ANout = ANout'-50;
% Sum in time across fibers, summed activity pattern
ANsum1 = sum(ANout,2);
% Downsample ANsum to get fs = fs_UR = 32kHz
ANsum = resample(ANsum1,fs,kv.fsmod);
% Simulated potential = UR * ANsum (* = convolution)
simpot = filter(ur,1,ANsum);
% Find max peak value (wave V)
maxpeak = max(simpot);
% Find corresponding time of max peak value (latency of wave V). The unit
% is [ms].
waveVlat = find(simpot == maxpeak)/fs*1000;
% find minimum in the interval from "max peak" to 6.7 ms later
minpeak = min(simpot(find(simpot == max(simpot)):...
find(simpot == max(simpot))+200));
% Calculate wave V amplitude, as the difference between the peak and the
% dip, in [\mu p] (micro pascals).
waveVamp = (maxpeak-minpeak);
if flags.do_plot
plot_roenne2012(stim_level,waveVamp, waveVlat, simpot, ANout, 'flow',kv.flow, 'fhigh', kv.fhigh);
end