function data = data_lyon2011(varargin)
%DATA_LYON2011 Data for demo_lyon2011CompressiveFunction, demo_lyon2011ExcitationPattern, demo_lyon2011ImpulseResponses
%
% Usage: data = data_lyon2011(varargin)
%
% DATA_LYON2011(varargin) returns data from rhode1996, lopezpoveda2003,
% russel1997, ren2002, glasberg1990 and deboer2000 to compare with the
% results of the lyon2011 model.
%
% The parameter varagin may be one of: 'rhode1996', 'lopezpoveda2003',
% 'russel1997', 'ren2002', 'glasberg1990' or 'deboer2000'.
% See the references below for the corresponding papers.
%
% The fields in the output data contain the following information:
%
% for rhode1996: physiological chinchila data from Rhode and Cooper (1996) at CF=500
%
% .L_animal_500hz
% .IO_animal_norm_500hz
%
% for lopezpoveda2003: psychoacoustic data at CF = 500Hz, 1kHz, 2kHz, 4kHz (Lopez-Poveda et al., 2003)
%
% .L_psych_500hz
% .IO_ex_norm_500hz
% .L_psych_1khz
% .IO_ex_norm_1khz
% .L_psych_2khz
% .IO_ex_norm_2khz
% .L_psych_4khz
% .IO_ex_norm_4khz
%
% for russel1997: physiological chinchila data by Russel and Nilsen (1997)
%
% .L_animal_4khz
% .IO_animal_norm_4khz
%
% for ren2002: physiological data (Ren,2002), Fig. 1, panel A.
%
% .P_ex
% .Ex_30dB_norm
%
% for glasberg1990: Experimentally-derived equation of Glasberg and Moore (1990)
%
% .f
% .QERB_exp
%
% for deboer2000: The QERBs derived from the impulse responses recorded by deBoer and Nuttal (2000), Fig. 1.
%
% .intensity_deBoer
% .QERB_deBoer
%
% Examples:
%
% To get provided data from lopezpoveda2003, use :
%
% data = data_lyon2011('lopezpoveda2003')
%
% See also: demo_lyon2011_compressivefunctions,
% demo_lyon2011, demo_lyon2011_impulseresponses
%
%
% References:
% I. Russel and K. Nilsen. The location of the cochlear amplifier:
% Spatial representation of a single tone on the guinea pig
% basilar membrane. Proceedings of the National Academy of Sciences of
% the United States of America, 94(6):2660--2664, 1997.
%
% E. Lopez-Poveda, C. J. Plack, and R. Meddis. Cochlear nonlinearity
% between 500 and 8000 hz in listeners with normal hearing. J. Acoust.
% Soc. Am., 113(951), 2003.
%
% W. Rhode and N. Cooper. Nonlinear mechanics in the apical turn of the
% chinchilla cochlea in vivo,. Aud. Neurosci., 3:101--121, 1996.
%
% R. et al. Data. J. Acoust. Soc. Am., 2002.
%
% R. F. Lyon. Cascades of two-pole–two-zero asymmetric resonators are
% good models of peripheral auditory function. J. Acoust. Soc. Am.,
% 130(6), 2011.
%
% B. R. Glasberg and B. Moore. Derivation of auditory filter shapes from
% notched-noise data. Hearing Research, 47(1-2):103--138, 1990.
%
%
% Url: http://amtoolbox.sourceforge.net/amt-0.10.0/doc/data/data_lyon2011.php
% Copyright (C) 2009-2020 Piotr Majdak and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 1.0.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%% ------ Check input options -----------------------------------------
% Define input flags
definput.flags.type = {'missingflag','rhode1996','lopezpoveda2003',...
'russel1997','ren2002','glasberg1990','deboer2000'};
% Parse input options
flags=ltfatarghelper({},definput,lower(varargin));
if flags.do_missingflag
flagnames=[sprintf('%s, ',definput.flags.type{2:end-2}),...
sprintf('%s or %s',definput.flags.type{end-1},definput.flags.type{end})];
error('%s: You must specify one of the following flags: %s.',mfilename,flagnames);
end
%% ------ Get data from different papers ------------------------------
if flags.do_rhode1996
%% Physiological and psychoacoustic data at CF=500 Hz
% physiological chinchila data from Rhode and Cooper(1996)
data.L_animal_500hz=[25,31,37,42,48,54,60,66,72,78,84];
IO_raw_500hz=[1.5,3,5,10,20,30,40,60,90,170,300];
IO_animal_500hz=db(IO_raw_500hz);
data.IO_animal_norm_500hz=IO_animal_500hz-IO_animal_500hz(1)+data.L_animal_500hz(1); % Normalize
end
if flags.do_lopezpoveda2003
%% Physiological and psychoacoustic data at CF=500 Hz
data.L_psych_500hz=[15,23,35,45,55];% from Lopez-Poveda et al., (2003)
IO_psych_500hz=[42,55,63,65,70];
data.IO_ex_norm_500hz=IO_psych_500hz-IO_psych_500hz(1)+data.L_psych_500hz(1); %Normalize
%% psychoacoustic data at CF= 1kHz (Lopez-Poveda et al., 2003)
data.L_psych_1khz=[10,20,30,40,50,60,70,80];
IO_psych_1khz=[38,50,62,70,82,88,88,92];
data.IO_ex_norm_1khz=IO_psych_1khz-IO_psych_1khz(1)+data.L_psych_1khz(1); %Normalize
%% psychoacoustic data at CF= 2kHz (Lopez-Poveda et al., 2003)
data.L_psych_2khz=10:10:100;%
IO_psych_2khz=[35,43,52,61,64,68,72,76,80,83];
data.IO_ex_norm_2khz=IO_psych_2khz-IO_psych_2khz(1)+data.L_psych_2khz(1); %Normalize
%% Physiological and psychoacoustic data at CF= 4kHz
data.L_psych_4khz=10:10:100;% Psychoacoustic data by Lopez-Poveda et al. (2003)
IO_psych_4khz=[31,38,48,53,60,64,65,67,68,69];
data.IO_ex_norm_4khz=IO_psych_4khz-IO_psych_4khz(1)+data.L_psych_4khz(1); %Normalize
end
if flags.do_russel1997
%% physiological chinchila data by Russel and Nilsen (1997)
data.L_animal_4khz=10:10:80;
IO_raw_4khz=[0.25,1,3,4.25,7,9,10,10.5];
IO_animal_4khz=db(IO_raw_4khz);
data.IO_animal_norm_4khz=IO_animal_4khz-IO_animal_4khz(1)+data.L_animal_4khz(1); %Normalize
end
if flags.do_ren2002
%% physiological data (Ren,2002), Fig. 1, panel A.
data.P_ex= 0.01.*[11,11.5,12,12.5,13,13.5,14,14.5,15,15.5,16]+0.2;% in percent from base
Ex_30dB=1e-6.*[7,10,18,30,50,80,50,30,20,10,8];Ex_30dB=20.*log10(Ex_30dB./2e-5);
data.Ex_30dB_norm=Ex_30dB-max(Ex_30dB);
end
if flags.do_glasberg1990
% Experimentally- derived equation of Glasberg and Moore (1990)
data.f=[500,1000,2000,4000];
data.QERB_exp=[6.35,7.53,8.31,8.76]; % the QERBs at 0.5, 1, 2 and 4 kHz at low intensities according to Glasberg and Moore (1990).
end
if flags.do_deboer2000
% The QERBs derived from the impulse responses recorded by deBoer and
% Nuttal (2000), Fig. 1.
data.intensity_deBoer=[20,60,70,80,90,100];
data.QERB_deBoer=[8.8923 7.7079 5.3953 4.8953 4.5704 2.9763];
end
end