THE AUDITORY MODELING TOOLBOX

This documentation page applies to an outdated AMT version (1.0.0). Click here for the most recent page.

View the code

Go to function

EXP_OSSES2022 - -

Usage

data = exp_osses2022(flags)
data = exp_osses2022(..., 'idxs', models)

Description

exp_osses2021 reproduces Figs. X and XX from Osses et al. (2022), where the following models are compared: 'dau1997 : Model #1 from Dau et al., (1997) 'zilany2014 : Model #2 from Zilany et al., (2014) 'verhulst2015 : Model #3 from Verhulst et al., (2015) 'verhulst2018 : Model #4 from Verhulst et al., (2018) 'bruce2018 : Model #5 from Bruce et al., (2018) 'king2019 : Model #6 from King et al., (2019) 'relanoiborra2019 : Model #7 from Relano-Iborra et al., (2019) 'osses2021 : Model #8 from Osses and Kohlrausch (2021)''''''''

The following flags can be specified;

'redo' Recomputes data for specified figure
'plot' Plot the output of the experiment. This is the default.
'no_plot' Don't plot, only return data.
'models' Vector selecting the models, if not all models to process. For example 'models',[1 3 6] shows the data for Dau et al., (1997), Verhulst et al., (2015), and King et al., (2019) only.
'fig4' Reproduce Fig. 4 of Osses et al., (2022).
'fig5' Reproduce Fig. 5 of Osses et al., (2022).

To display Fig. 3 of Osses et al., (2022) use

out = exp_osses2022('fig3');
exp_osses2022_1_1.png

To display Fig. 4 of Osses et al., (2022) use

out = exp_osses2022('fig4');

This code produces the following output:

actual f0=1007.0 Hz using Verhulst's mapping (bin=245)
actual f0=501.8 Hz using Verhulst's mapping (bin=305)
actual f0=4012.7 Hz using Verhulst's mapping (bin=112)
exp_osses2022_2_1.png exp_osses2022_2_2.png exp_osses2022_2_3.png exp_osses2022_2_4.png exp_osses2022_2_5.png exp_osses2022_2_6.png

To display Figs. 6 and 7 of Osses et al., (2022) use

out = exp_osses2022('fig6');
exp_osses2022_4_1.png exp_osses2022_4_2.png exp_osses2022_4_3.png

To display Fig. 8 of Osses et al., (2022) use

out = exp_osses2022('fig8');
exp_osses2022_5_1.png exp_osses2022_5_2.png exp_osses2022_5_3.png exp_osses2022_5_4.png exp_osses2022_5_5.png

To display Fig. 9 of Osses et al., (2022) use

out = exp_osses2022('fig9');
exp_osses2022_6_1.png exp_osses2022_6_2.png exp_osses2022_6_3.png exp_osses2022_6_4.png exp_osses2022_6_5.png exp_osses2022_6_6.png

To display Fig. 11 of Osses et al., (2022) use

out = exp_osses2022('fig11');
exp_osses2022_7_1.png exp_osses2022_7_2.png exp_osses2022_7_3.png exp_osses2022_7_4.png exp_osses2022_7_5.png

To display Fig. 12 of Osses et al., (2022) use

out = exp_osses2022('fig12');
exp_osses2022_8_1.png exp_osses2022_8_2.png exp_osses2022_8_3.png exp_osses2022_8_4.png exp_osses2022_8_5.png exp_osses2022_8_6.png exp_osses2022_8_7.png exp_osses2022_8_8.png

References:

I. C. Bruce, Y. Erfani, and M. S. R. Zilany. A phenomenological model of the synapse between the inner hair cell and auditory nerve: Implications of limited neurotransmitter release sites. Hearing Research, 360:40--54, 2018. [ http ]

T. Dau, B. Kollmeier, and A. Kohlrausch. Modeling auditory processing of amplitude modulation. I. Detection and masking with narrow-band carriers. J. Acoust. Soc. Am., 102:2892--2905, 1997a.

T. Dau, B. Kollmeier, and A. Kohlrausch. Modeling auditory processing of amplitude modulation. II. Spectral and temporal integration. J. Acoust. Soc. Am., 102:2906--2919, 1997b.

M. S. A. Zilany, I. C. Bruce, and L. H. Carney. Updated parameters and expanded simulation options for a model of the auditory periphery. The Journal of the Acoustical Society of America, 135(1):283--286, Jan. 2014. [ DOI ]

S. Verhulst, H. Bharadwaj, G. Mehraei, C. Shera, and B. Shinn-Cunningham. Functional modeling of the human auditory brainstem response to broadband stimulation. jasa, 138(3):1637--1659, 2015.