This documentation page applies to an outdated AMT version (1.0.0). Click here for the most recent page.
function [outsig, fc] = dau1996(insig, fs, varargin)
%DAU1996 Linear filtering for monaural masking (basic)
% Usage: [outsig, fc] = dau1996(insig,fs);
% [outsig, fc] = dau1996(insig,fs,...);
%
% Input parameters:
% insig : input acoustic signal.
% fs : sampling rate.
%
% *Warning:* This code is incorrect, the Dau 1996 models uses a
% transmission-line model from Strube 1985, while this code erroneously
% uses the gammatone filters. If/when the Strube model is included in
% AMToolbox, this function will be fixed.
%
% DAU1996(insig,fs) computes the internal representation of the
% signal insig sampled with a frequency of fs Hz as described in Dau,
% Puschel and Kohlrausch (1996a).
%
% [outsig,fc]=DAU1996(...) additionally returns the center frequencies of
% the filter bank.
%
% The Dau 1996 model consists of the following stages:
%
% 1) a gammatone filter bank with 1-erb spaced filtes.
%
% 2) an envelope extraction stage done by half-wave rectification
% followed by low-pass filtering to 1000 Hz.
%
% 3) an adaptation stage modelling nerve adaptation by a cascade of 5
% loops.
%
% 4) a modulation low pass filter liming modulations to below 50 Hz.
%
% Any of the optional parameters for AUDITORYFILTERBANK, IHCENVELOPE
% and ADAPTLOOP may be specified for this function. They will be passed
% to the corresponding functions.
%
% The model implemented in this file is not identical to the model
% published in Dau et. al. (1996a). An overshoot limit has been added to
% the adaptation stage to fix a problem where abrupt changes in the
% input signal would cause unnaturally big responses. This is described
% in Dau et. al. (1997a).
%
% See also: auditoryfilterbank, ihcenvelope, adaptloop, dau1997
% plot_audspecgram demo_dau1996 demo_lopezpoveda2001
% baumgartner2016_spectralanalysis baumgartner2017_iacc
% exp_osses2022 baumgartner2013
%
% References:
% T. Dau, D. Pueschel, and A. Kohlrausch. A quantitative model of the
% effective signal processing in the auditory system. I. Model structure.
% J. Acoust. Soc. Am., 99(6):3615--3622, 1996a.
%
% T. Dau, D. Pueschel, and A. Kohlrausch. A quantitative model of the
% "effective" signal processing in the auditory system. II. Simulations
% and measurements. J. Acoust. Soc. Am., 99:3623--3631, 1996b.
%
% T. Dau, B. Kollmeier, and A. Kohlrausch. Modeling auditory processing
% of amplitude modulation. I. Detection and masking with narrow-band
% carriers. J. Acoust. Soc. Am., 102:2892--2905, 1997a.
%
%
% Url: http://amtoolbox.sourceforge.net/amt-0.10.0/doc/models/dau1996.php
% Copyright (C) 2009-2020 Piotr Majdak and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 1.0.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% #StatusDoc: Good
% #StatusCode: Perfect
% #Verification: Unknown
% #Requirements: MATLAB M-Signal
% #Author: Torsten Dau
% #Author: Morten Løve Jepsen
% #Author: Peter L. Søndergaard
% ------ Checking of input parameters ------------
if nargin<2
error('%s: Too few input arguments.',upper(mfilename));
end;
if ~isnumeric(insig)
error('%s: insig must be numeric.',upper(mfilename));
end;
if ~isnumeric(fs) || ~isscalar(fs) || fs<=0
error('%s: fs must be a positive scalar.',upper(mfilename));
end;
definput.import={'auditoryfilterbank','ihcenvelope','adaptloop'};
definput.importdefaults={'ihc_dau1996','adt_dau1996'};
definput.keyvals.subfs=[];
[flags,keyvals] = ltfatarghelper({'flow','fhigh'},definput,varargin);
% ------ do the computation -------------------------
% Apply the auditory filterbank
[outsig, fc] = auditoryfilterbank(insig,fs,'argimport',flags,keyvals);
% 'haircell' envelope extraction
outsig = ihcenvelope(outsig,fs,'argimport',flags,keyvals);
% non-linear adaptation loops
outsig = adaptloop(outsig,fs,'argimport',flags,keyvals);
% Calculate filter coefficients for the 20 ms (approx.eq to 8 Hz) modulation
% lowpass filter.
% This filter places a pole /very/ close to the unit circle.
mlp_a = exp(-(1/0.02)/fs);
mlp_b = 1 - mlp_a;
mlp_a = [1, -mlp_a];
% Apply the low-pass modulation filter.
outsig = filter(mlp_b,mlp_a,outsig);
% Apply final resampling to avoid excessive data
if ~isempty(keyvals.subfs)
outsig = fftresample(outsig,round(length(outsig)/fs*subfs));
end;