function [E,varargout] = baumgartner2017( target,template,varargin )
%BAUMGARTNER2017 Sound externalization model based on monaural spectral cues
% Usage: [E,cues,cueLabels] = baumgartner2017( target,template )
%
% Input parameters:
%
% target : binaural impulse response(s) referring to the directional
% transfer function(s) (DFTs) of the target sound(s).
% Option 1: given in SOFA format -> sagittal plane DTFs will
% be extracted internally.
% Option 2: binaural impulse responses of all available
% listener-specific DTFs of the sagittal plane formatted
% according to the following matrix dimensions:
% time x direction x channel/ear
%
% template: binaural impulse responses of all available
% listener-specific DTFs of the sagittal plane referring to
% the perceived lateral angle of the target sound.
% Options 1 & 2 equivalent to target.
%
% Output parameters:
%
% E : predicted degree of externalization
%
% cues : outcomes of individual cues
%
% cueLabels : cue labels; cell array with 1st col. denoting acronyms
% and 2nd col. for descriptions
%
% BAUMGARTNER2017(...) is a model for sound externalization.
% It bases on the comparison of the intra-aural internal representation
% of the incoming sound with a template and results in a probabilistic
% prediction of polar angle response.
%
% BAUMGARTNER2017 accepts the following optional parameters:
%
% 'cueWeights',cW Set the weights of individual cues to determine the
% final externalization score.
%
% Cue-specific weights (entered as a vector) are ordered as follows:
%
% 1. monaural spectral similarity (c.f., Baumgartner et
% al., 2014). This is the default.
%
% 2. interaural spectral similarity of ILDs (c.f.,
% Hassager et al., 2016)
%
% 3. spectral standard deviation of ILDs (c.f.,
% Georganti et al., 2013)
%
% 4. temporal standard deviation of ILDs (c.f., Catic
% et al., 2015)
%
% 5. interaural coherence (c.f., Hassager
% et al., 2017)
%
% 6. interaural broadband time-intensity coherence
%
% 7. difference in sound pressure level
%
% 'fs',fs Define the sampling rate of the impulse responses.
% Default value is 48000 Hz.
%
% 'S',S Set the listener-specific sensitivity threshold
% (threshold of the sigmoid link function representing
% the psychometric link between transformation from the
% distance metric and similarity index) to S.
% Default value is 1.
%
% 'lat',lat Set the apparent lateral angle of the target sound to
% lat. Default value is 0 degree (median SP).
%
% 'stim',stim Define the stimulus (source signal without directional
% features). As default an impulse is used.
%
% 'fsstim',fss Define the sampling rate of the stimulus.
% Default value is 48000 Hz.
%
% 'flow',flow Set the lowest frequency in the filterbank to
% flow. Default value is 700 Hz.
%
% 'fhigh',fhigh Set the highest frequency in the filterbank to
% fhigh. Default value is 18000 Hz.
%
% 'space',sp Set spacing of auditory filter bands (i.e., distance
% between neighbouring bands) to sp in number of
% equivalent rectangular bandwidths (ERBs).
% Default value is 1 ERB.
%
% 'do',do Set the differential order of the spectral gradient
% extraction to do. Default value is 1 and includes
% restriction to positive gradients inspired by cat DCN
% functionality.
%
% 'bwcoef',bwc Set the binaural weighting coefficient bwc.
% Default value is 13 degrees.
%
% 'range',c1 Set the range factor of the externalization scores to c1.
% Default value is 3.78 from Hassager et al. (2016).
%
% 'offset',c2 Set the offset of the externalization score to c2.
% Default value is 1 from Hassager et al. (2016).
%
% 'ILD_JND',L Set the just noticeable ILD difference to L from the
% internal template. Default value is 1 (dB).
%
% 'ITD_JND',T Set the just noticeable ITD difference to T from the
% internal template. Default value is 20e-6 (s).
%
% Requirements:
% -------------
%
% 1) SOFA API from http://sourceforge.net/projects/sofacoustics for Matlab (in e.g. thirdparty/SOFA)
%
% 2) Data in hrtf/baumgartner2017
%
% 3) Circular Statistics Toolbox from https://de.mathworks.com/matlabcentral/fileexchange/10676-circular-statistics-toolbox-directional-statistics
%
% References:
% R. Baumgartner, P. Majdak, H. Colburn, and B. Shinn-Cunningham.
% Modeling sound externalization based on listener-specific spectral
% cues. In Acoustics ‘17 Boston: The 3rd Joint Meeting of the Acoustical
% Society of America and the European Acoustics Association, Boston, MA,
% Jun 2017.
%
%
% See also: baumgartner2016_spectralanalysis,
% baumgartner2016_gradientextraction, baumgartner2014_binauralweighting,
% baumgartner2021 baumgartner2017_iacc itdestimator data_baumgartner2017
% sig_li2020
% demo_baumgartner2017
% demo_baumgartner2021
% exp_steidle2019
% baumgartner2014
% dietz2011
% dau1996
% baumgartner2021
% baumgartner2016
%
% Url: http://amtoolbox.org/amt-1.1.0/doc/models/baumgartner2017.php
% Copyright (C) 2009-2021 Piotr Majdak, Clara Hollomey, and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 1.1.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% #StatusDoc: Perfect
% #StatusCode: Perfect
% #Verification: Unknown
% #Requirements: SOFA M-Stats M-Signal O-Statistics
% #Author: Robert Baumgartner, Acoustics Research Institute, Vienna, Austria
%% Check input
definput.import={'baumgartner2017','baumgartner2016','baumgartner2014','baumgartner2014_pmv2ppp','localizationerror','amt_cache'};
[flags,kv]=ltfatarghelper(...
{'fs','S','lat','stim','space','do','flow','fhigh',... %'fsstim'
'bwcoef','polsamp','rangsamp','mrsmsp','gamma'},definput,varargin);
flags.do_plot = false;
if not(isstruct(target)) && ismatrix(target)
target = permute(target,[1,3,2]);
% warning(['Matrix dimensions of target should be: time x direction x channel/ear.' ...
% 'Since 3rd dimension was empty, 2nd dimension was used as channel dimension.'])
end
if not(isstruct(template)) && ismatrix(template)
template = permute(template,[1,3,2]);
% warning(['Matrix dimensions of template should be: time x direction x channel/ear.' ...
% 'Since 3rd dimension was empty, 2nd dimension was used as channel dimension.'])
end
%% Print Settings
if flags.do_print
if flags.do_nomrs
kv.mrsmsp = 0;
end
amt_disp(['Settings: PSGE = ' num2str(kv.do,'%1.0f') '; Gamma = ' ...
num2str(kv.gamma,'%1.0u') '; Epsilon = ' num2str(kv.mrsmsp,'%1.0f') ' deg']);
end
%% Determine lateral angle and extract HRTFs of sagittal plane
if isstruct(target) % Targets given in SOFA format
kv.fs = target.Data.SamplingRate;
[target,tang] = extractsp( kv.lat,target );
% else
% fncache = ['latLookup_',template.GLOBAL_ListenerShortName];
% latLookup = amt_cache('get',fncache,flags.cachemode);
% if isempty(latLookup)
% latLookup = itd2angle_lookuptable(template,template.Data.SamplingRate,'dietz2011');
% amt_cache('set',fncache,latLookup)
% end
% tarSig = squeeze(target);
% kv.lat = wierstorf2013_estimateazimuth(tarSig,latLookup,'fs',kv.fs,'dietz2011','rms_weighting');
% disp(kv.lat)
end
if isstruct(template) % Template given in SOFA format
[template,rang] = extractsp( kv.lat,template );
end
% Error handling
% if size(template,2) ~= length(rang)
% fprintf('\n Error: Second dimension of template and length of polsamp need to be of the same size! \n')
% return
% end
%% Optional: Middle ear filtering
if flags.do_middleEarFilter
b=middleearfilter(kv.fs);
target = filter(b,1,target);
template = filter(b,1,template);
end
%% Optional: HRTF filtering
dimtar = size(target); % for lconv dim check
if not(isempty(kv.stim))
target = lconv(target,kv.stim);
end
% check that lconv preserved matrix dimensions (earlier bug in lconv)
if size(target,2) ~= dimtar(2)
target = reshape(target,[size(target,1),dimtar(2:end)]);
end
% frameLength = round((kv.tempWin*kv.fs));
%% Level difference
SPL = dbspl(target) - dbspl(template);
SPL = max(SPL-kv.ILD_JND,0);
SPL = mean(SPL,3);
%% ITD & IC
[tem.itd,~,tem.iacc] = itdestimator(shiftdim(template,1),'fs',kv.fs,'MaxIACCe');
[tar.itd,~,tar.iacc] = itdestimator(shiftdim(target,1),'fs',kv.fs,'MaxIACCe');
% IACC = tar.iacc/tem.iacc - 1;
tem.ic = baumgartner2017_iacc(squeeze(template),'argimport',flags,kv);
tar.ic = baumgartner2017_iacc(squeeze(target),'argimport',flags,kv);
IC = tar.ic - tem.ic;
%% Filterbank
% [tem.mp,fc] = baumgartner2016_spectralanalysis(template,70,'argimport',flags,kv,'tiwin',0.005,'gammatone','redo');
% tar.mp = baumgartner2016_spectralanalysis(target,70,'argimport',flags,kv,'tiwin',0.005,'gammatone','redo');
[tem.mp,fc] = baumgartner2016_spectralanalysis(template,70,'argimport',flags,kv,'tiwin',kv.tempWin,'gammatone','redo');
tar.mp = baumgartner2016_spectralanalysis(target,70,'argimport',flags,kv,'tiwin',kv.tempWin,'gammatone','redo');
if isscalar(kv.reflectionOnsetTime) % evaluate only direct path (DP)
idDP = round(kv.reflectionOnsetTime*kv.fs);
N1ms = round(1e-3*kv.fs); % 1 ms fade out
taper = [ones(1,idDP-N1ms) , 0.5*(1+cos(linspace(0,pi,N1ms)))];
temTaper = repmat([taper(:);zeros(size(template,1)-idDP,1)],...
[1,size(template,2),size(template,3)]);
tarTaper = repmat([taper(:);zeros(size(target,1)-idDP,1)],...
[1,size(target,2),size(target,3)]);
[temDP.mp,fc] = baumgartner2016_spectralanalysis(temTaper.*template,70,...
'argimport',flags,kv,'tiwin',kv.tempWin,'gammatone','redo');
tarDP.mp = baumgartner2016_spectralanalysis(tarTaper.*target,70,...
'argimport',flags,kv,'tiwin',kv.tempWin,'gammatone','redo');
end
%% interaural temporal SD of ILDs (Catic et al., 2015)
MinNumTimeFrames = 20;
if size(tem.mp,5) >= MinNumTimeFrames && size(tar.mp,5) >= MinNumTimeFrames
tem.STild = -diff(tem.mp,1,3); % short-term ILDs
tar.STild = -diff(tar.mp,1,3);
ITSD = 1 - mean(std(tar.STild,0,5)./std(tem.STild,0,5));
else
ITSD = nan;
end
%% Temporal "average" -> max is most appropriate because of RMS and frequency-dependent excitation delay
% if kv.tempWin >= 1
% tem.mp = max(tem.mp,[],5);
% tar.mp = max(tar.mp,[],5);
% end
if flags.do_plot
for ear = 1:2
subplot(1,2,ear)
semilogx(fc,squeeze(tar.mp(:,1,ear)))
xlabel('Frequency (Hz)')
ylabel('RMS magnitude (dB)')
hold on
end
end
%% Spectral cues
if exist('temDP','var')
tem.psg = baumgartner2016_gradientextraction(temDP.mp,fc,'mgs',1);
temDP.ild = diff(temDP.mp,1,3);
else
tem.psg = baumgartner2016_gradientextraction(tem.mp,fc,'mgs',1);
end
tem.ild = diff(tem.mp,1,3);
if exist('tarDP','var')
tar.psg = baumgartner2016_gradientextraction(tarDP.mp,fc,'mgs',1);
tarDP.ild = diff(tarDP.mp,1,3);
else
tar.psg = baumgartner2016_gradientextraction(tar.mp,fc,'mgs',1);
end
tar.ild = diff(tar.mp,1,3);
%% spectral SD of ISLD (Georganti et al., 2013) -> dprime possible
% tar.sdild = std(tar.ild,0,1);
% tem.sdild = std(tem.ild,0,1);
% ref.sdild = std(ref.ild,0,1);
% ISLDspecSD = mean(tar.sdild./tem.sdild,5);
%% Spectral comparison
for iSC = 1:3 % first monaural then interaural
if iSC == 1 % monaural spectral gradients
tem.nrep = tem.psg.m;
tar.nrep = tar.psg.m;
elseif iSC == 2 % interaural spectral differences
if exist('temDP','var') && exist('tarDP','var')
tem.nrep = temDP.ild;
tar.nrep = tarDP.ild;
else
tem.nrep = tem.ild;
tar.nrep = tar.ild;
end
elseif iSC == 3 % spectral SD of interaural differences
tem.nrep = std(tem.ild,0,1);
tar.nrep = std(tar.ild,0,1);
kv.ILD_JND = 0;
end
% comparison with time average of spectral template
nrep = {tar.nrep};
if flags.do_dprime
nrep{2} = tem.nrep;
end
tem.nrep = mean(tem.nrep,5);
sigma = cell(length(nrep),1);
for inrep = 1:length(nrep)
tmp = repmat(tem.nrep,[1,1,1,1,size(nrep{inrep},5)]);
if iSC < 3
delta = abs(tmp-repmat(nrep{inrep},[1,size(tmp,2),1,1,1]));
delta(delta < kv.ILD_JND) = 0; % limit minimum ILD difference according to JND
else
delta = tmp-repmat(nrep{inrep},[1,size(tmp,2),1,1,1]);
end
delta = delta./(eps+abs(tmp)); % normalization (Weber fraction)
sigma{inrep} = mean(delta); % average across frequency bands
if iSC == 1 % do_intraaural
sigma{inrep} = baumgartner2014_binauralweighting(sigma{inrep},'argimport',flags,kv);
end
end
% temporal integration
if length(sigma{1}) == 1
distmetric = sigma{1};%exp(-kv.S*sigma{1});
elseif flags.do_dprime % signal detection theory applied to time histograms
% figure; histogram(sigma{1}); hold on ; histogram(sigma{2}); legend('target','reference')
allsigma = [sigma{1}(:);sigma{2}(:)];
msigma = mean(allsigma);
sdsigma = std(allsigma);
mzsigma(1) = mean((sigma{1}-msigma) ./ sdsigma);
mzsigma(2) = mean((sigma{2}-msigma) ./ sdsigma);
dprime = max(mzsigma(1)-mzsigma(2),0);
distmetric = dprime;
else % temporal weighting according to amount of sensory information available
% si = exp(-kv.S*sigma{1});
% figure; plot(squeeze(bsi))
tweight = mean(mean(abs(tar.nrep)),3); % temporal weighting
tweight = tweight-min(tweight,[],5); % bounded between 0
tweight = 2*tweight./max(tweight,[],5); % and 2
distmetric = sigma{1}.*tweight;
distmetric = mean(distmetric,5);
end
% si = distmetric;%exp(-kv.S*distmetric);
if iSC == 1
MSS = distmetric; % monaural spectral distance
elseif iSC == 2
ISS = distmetric; % interaural spectral distance
% IIC = distmetric; % for ITIC
elseif iSC == 3
ISSD = distmetric;
end
end
%% Interaural time-intenstiy coherence (ITIC) -> dprime possible
% IIC = mean(tar.ild)/(mean(tem.ild)+eps);
% if tar.itd == tem.itd && tem.itd == 0
% TC = 0;
% else
% TC = (tar.itd-tem.itd)/(eps+tem.itd);
% end
% IC = mean(tar.ild(:))/(eps+mean(tem.ild(:)));
if abs(tar.itd - tem.itd) >= kv.ITD_JND
ITR = tar.itd/(eps+tem.itd) -1;
else
ITR = 0;
end
if any(abs(mean(tar.ild) - mean(tem.ild)) >= kv.ILD_JND)
ILR = mean(tar.ild)./(mean(tem.ild)+eps) -1;
else
ILR = 0;
end
ITIT = abs( ITR - ILR );
%% Cue integration/weighting
cues = [MSS; ISS; ISSD; ITSD; IC; ITIT; SPL];
cueLbl = {'MSG','Monaural spectral gradients (c.f., Baumgartner et al., 2014)'; ...
'ISS','Interaural spectral shape (c.f., Hassager et al., 2016)'; ...
'ISSD','Interaural spectral standard deviation (c.f., Georganti et al., 2013)'; ...
'ITSD','Interaural temporal standard deviation (c.f., Catic et al., 2015)'; ...
'IC','Interaural coherence (c.f., Hassager et al., 2017)'; ...
'ITIT','Interaural time-intensity trading (ITD vs. ILD)'; ...
'SPL','Level difference (target - reference)'; ...
};
if flags.do_intraaural
kv.cueWeights = 1;
elseif flags.do_interaural
kv.cueWeights = [0,1];
end
if isscalar(kv.S)
kv.S = repmat(kv.S,[length(cues),1]);
else
kv.S = postpad(kv.S(:),length(cues));
end
kv.cueWeights = postpad(kv.cueWeights(:),length(cues))/sum(kv.cueWeights);
si = exp(-cues./kv.S);
bsi = nansum(kv.cueWeights .* si);
E = kv.range*bsi +kv.offset;%max(bsi);%min(1,max(bsi));%geomean(bsi);
if nargout >= 2
varargout{1} = cues;
varargout{2} = cueLbl;
end
end