This documentation page applies to an outdated AMT version (1.1.0). Click here for the most recent page.
function [waveVamp,waveVlat] = roenne2012_click(stim_level,varargin)
%roenne2012_click Simulate ABR respone to click
% Usage: [waveVlat] = roenne2012_click(stim_level).
%
% Output parameters:
% waveVlat : Latency of simulated ABR wave V peak.
% waveVamp : Amplitude of simulated ABR wave V.
%
% Input parameters:
% stim_level : Simulated levels. Default: Elberling et al. (2010)
% stimulus levels (20, 40, 60 dB HL) calibrated to pe
% SPL (+ 35.2 dB), see Rønne et al. (2012).
%
% ronne2012_click(stim_level) returns click evoked ABR wave V latencies
% and amplitudes for a range of given stimulus levels. It simulates ABR
% responses to click stimulus using the ABR model of Rønne et
% al. (2012). The click stimulus is defined similar to Elberling et
% al. (2010).
%
% ---------
%
% Please cite Rønne et al. (2012) and Zilany and Bruce (2007) if you use
% this model.
%
% References:
% C. Elberling, J. Calloe, and M. Don. Evaluating auditory brainstem
% responses to different chirp stimuli at three levels of stimulation. J.
% Acoust. Soc. Am., 128(1):215--223, 2010.
%
% F. M. Rønne, T. Dau, J. Harte, and C. Elberling. Modeling auditory
% evoked brainstem responses to transient stimuli. The Journal of the
% Acoustical Society of America, 131(5):3903--3913, 2012. [1]http ]
%
% M. S. A. Zilany and I. C. Bruce. Representation of the vowel (epsilon)
% in normal and impaired auditory nerve fibers: Model predictions of
% responses in cats. J. Acoust. Soc. Am., 122(1):402--417, jul 2007.
%
% References
%
% 1. http://scitation.aip.org/content/asa/journal/jasa/131/5/10.1121/1.3699171
%
%
% Url: http://amtoolbox.org/amt-1.1.0/doc/modelstages/roenne2012_click.php
% Copyright (C) 2009-2021 Piotr Majdak, Clara Hollomey, and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 1.1.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%definput.keyvals.stim_level = 40:10:100;
%[flags,kv] = ltfatarghelper({},definput,varargin);
fsmod = 200e3; % AN model fs.
modellength = 40; % length of modelling [ms].
% load Unitary Response
[ur,fs]=data_roenne2012;
% Output filter corresponding to recording settings.
b=fir1(200,[100/(fs/2),3000/(fs/2)]);
a=1;
%% create click stimulus
% Load click stimulus (c0) from Elberling et al. (2010).
[stim,fsstim] = data_elberling2010('stim');
% Define length of stimulus, uses variable modellength.
refstim = zeros(modellength/1000*fs,1);
% Create stimulus with chirp stimulus and concatenated zeros => combined
% length = "modellength".
refstim(1:length(stim.c0)) = stim.c0;
%% Simulate ABR - loop over stimulus levels
for L = 1:length(stim_level)
lvl = stim_level(L);
% call AN model
ANdata = zilany2007(lvl, refstim, fsstim,fsmod);
% subtract 50 due to spontaneous rate.
ANout = ANdata-50;
% Sum in time across fibers = summed activity pattern.
ANsum = sum(ANout,2);
% Downsample ANsum to get fs = fs_UR = 32kHz.
ANsum = resample(ANsum,fs,fsmod);
% Simulated potential = UR * ANsum (* = convolved).
simpot = filter(ur,1,ANsum);
% apply output filter similar to the recording conditions in Elberling
% et al. (2010).
simpot = filtfilt(b,a,simpot);
% Find max peak value (wave V).
maxpeak = max(simpot);
% Find corresponding time of max peak value (latency of wave V).
waveVlat(L)= find(simpot == max(simpot));
% find minimum in the interval from "max peak" to 6.7 ms later.
minpeak = min(simpot(find(simpot == maxpeak):find(simpot == maxpeak)+100));
% Calculate wave V amplitude, as the difference between the peak and
% the following dip.
waveVamp(L) = (maxpeak-minpeak);
end
% Subtract 15 ms as click stimulus peaks 15 ms into the time series
waveVlat = waveVlat/fs*1000-15;