function [waveVamp,waveVlat] = roenne2012_click(stim_level,varargin)
%ROENNE2012_CLICK Simulate ABR respone to click
% Usage: [waveVlat] = roenne2012_click(stim_level).
%
% Input parameters:
% stim_level : Simulated levels. Default: Elberling et al. (2010)
% stimulus levels (20, 40, 60 dB HL) calibrated to pe
% SPL (+ 35.2 dB), see Rønne et al. (2012).
%
% Output parameters:
% waveVlat : Latency of simulated ABR wave V peak.
% waveVamp : Amplitude of simulated ABR wave V.
%
% ronne2012_click(stim_level) returns click evoked ABR wave V latencies
% and amplitudes for a range of given stimulus levels. It simulates ABR
% responses to click stimulus using the ABR model of Rønne et
% al. (2012). The click stimulus is defined similar to Elberling et
% al. (2010).
%
%
%
% Please cite Rønne et al. (2012) and Zilany and Bruce (2007) if you use
% this model.
%
% References:
% C. Elberling, J. Calloe, and M. Don. Evaluating auditory brainstem
% responses to different chirp stimuli at three levels of stimulation.
% The Journal of the Acoustical Society of America, 128(1):215--223,
% 2010.
%
% F. M. Rønne, T. Dau, J. Harte, and C. Elberling. Modeling auditory
% evoked brainstem responses to transient stimuli. The Journal of the
% Acoustical Society of America, 131(5):3903--3913, 2012.
%
% M. S. A. Zilany and I. C. Bruce. Representation of the vowel (epsilon)
% in normal and impaired auditory nerve fibers: Model predictions of
% responses in cats. The Journal of the Acoustical Society of America,
% 122(1):402--417, jul 2007.
%
%
% Url: http://amtoolbox.org/amt-1.6.0/doc/modelstages/roenne2012_click.php
% #StatusDoc: Perfect
% #StatusCode: Perfect
% #Verification: Verified
% #Requirements: M-Signal
% #Author: Peter L. Sondergaard (2012)
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
%definput.keyvals.stim_level = 40:10:100;
%[flags,kv] = ltfatarghelper({},definput,varargin);
fsmod = 200e3; % AN model fs.
modellength = 40; % length of modelling [ms].
% load Unitary Response
[ur,fs]=data_roenne2012;
% Output filter corresponding to recording settings.
b=fir1(200,[100/(fs/2),3000/(fs/2)]);
a=1;
%% create click stimulus
% Load click stimulus (c0) from Elberling et al. (2010).
[stim,fsstim] = data_elberling2010('stim');
% Define length of stimulus, uses variable modellength.
refstim = zeros(modellength/1000*fs,1);
% Create stimulus with chirp stimulus and concatenated zeros => combined
% length = "modellength".
refstim(1:length(stim.c0)) = stim.c0;
%% Simulate ABR - loop over stimulus levels
for L = 1:length(stim_level)
lvl = stim_level(L);
% call AN model
ANdata = zilany2007(lvl, refstim, fsstim,fsmod);
% subtract 50 due to spontaneous rate.
ANout = ANdata-50;
% Sum in time across fibers = summed activity pattern.
ANsum = sum(ANout,2);
% Downsample ANsum to get fs = fs_UR = 32kHz.
ANsum = resample(ANsum,fs,fsmod);
% Simulated potential = UR * ANsum (* = convolved).
simpot = filter(ur,1,ANsum);
% apply output filter similar to the recording conditions in Elberling
% et al. (2010).
simpot = filtfilt(b,a,simpot);
% Find max peak value (wave V).
maxpeak = max(simpot);
% Find corresponding time of max peak value (latency of wave V).
waveVlat(L)= find(simpot == max(simpot));
% find minimum in the interval from "max peak" to 6.7 ms later.
minpeak = min(simpot(find(simpot == maxpeak):find(simpot == maxpeak)+100));
% Calculate wave V amplitude, as the difference between the peak and
% the following dip.
waveVamp(L) = (maxpeak-minpeak);
end
% Subtract 15 ms as click stimulus peaks 15 ms into the time series
waveVlat = waveVlat/fs*1000-15;