This documentation page applies to an outdated AMT version (1.2.0). Click here for the most recent page.
function [shorttermloudness, longtermloudness, loudness] = moore2016(inputsignal)
%MOORE2016 Binaural loudness model
% Usage: [shorttermloudness, longtermloudness, loudness] = moore2016(inputsignal)
%
% Input parameters:
% inputsignal : a vector or 2 dimensional matrix containing the input signal
% sampled to 32 kHz
%
% Output parameters:
% shorttermloudness : shortterm loudness [phon]
% longtermloudness : longterm loudness [phon]
% loudness : maximum loudness [phon]
%
% For each ear, the model includes: an outer and middle ear filter; short-term
% spectral analysis; calculation of an excitation pattern, a compressive nonlinearity,
% and smoothing over time.
% The short-term loudness is calculated as the sum of the short-term loudness
% values for the two ears. The long-term loudness for each ear is obtained from
% the short-term loudness. The overall loudness impression is calculated as the
% sum of the long-term loudness of both ears.
% The Matlab code provided calculates loudness according to the model described by Moore et
% al. (2016), but with the modified time constants described by Moore et al. (2018). It was
% developed from C code for the same model, and Matlab code written for ANSI S3.4-2007,
% based on Moore et al. (1997) and Glasberg and Moore (2006) and ISO 532-2 (2017), based
% on Moore and Glasberg (2007).
% The code may be used with wav files (one or two channels). If a one-channel file is used, the
% program assumes diotic presentation. To calculate the loudness of a monaural signal, a
% second channel filled with zeros must be added.
%
% See also: f2erb plot_moore2016 moore2016_cochlea moore2016_monauralinstspecloudness
% moore2016_agcnextframe moore2016_longtermloudness moore2016_binauralloudness
% moore2016_spectrum moore2016_excitationpattern
% moore2016_shorttermspecloudness
%
% References:
% B. R. Glasberg and B. C. J. Moore. A Model of Loudness Applicable to
% Time-Varying Sounds. J. Audio Eng. Soc, 50(5):331--342, 2002.
%
% B. C. J. Moore, B. R. Glasberg, and T. Baer. A Model for the Prediction
% of Thresholds, Loudness, and Partial Loudness. J. Audio Eng. Soc,
% 45(4):224--240, 1997.
%
%
% Url: http://amtoolbox.org/amt-1.2.0/doc/models/moore2016.php
% Copyright (C) 2009-2022 Piotr Majdak, Clara Hollomey, and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 1.2.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% #StatusDoc: Good
% #StatusCode: Good
% #Verification: Unknown
% #Requirements: M-Signal
% #Author: Josef Schlittenlacher (2018): original code
% #Author: Clara Hollomey (2021): integration in the AMT
%defaults
Fs = 32000;
dBMax = 100;
filenameFilter = 'ff_32000.mat';
%calculate the outer/middleear filtering
s = moore2016_cochlea(inputsignal, filenameFilter);
%calculate the short term loudness
[InstantaneousSpecificLoudnessLeft, InstantaneousSpecificLoudnessRight] = moore2016_monauralinstspecloudness( s, Fs, dBMax );
%remove NAs (only necessary because the first value tends to be one, at least in Octave,
%and then, by successive summing, everything gets messed up)
InstantaneousSpecificLoudnessLeft(find(isnan(InstantaneousSpecificLoudnessLeft ))) = 0;
InstantaneousSpecificLoudnessRight(find(isnan(InstantaneousSpecificLoudnessRight ))) = 0;
ShortTermSpecificLoudnessLeft = moore2016_shorttermspecloudness( InstantaneousSpecificLoudnessLeft );
ShortTermSpecificLoudnessRight = moore2016_shorttermspecloudness( InstantaneousSpecificLoudnessRight );
ShortTermLoudnessLeft = zeros( size( ShortTermSpecificLoudnessLeft, 1 ), 1 );
ShortTermLoudnessRight = zeros( size( ShortTermSpecificLoudnessRight, 1 ), 1 );
%calculate the binaural loudness
for i = 1:size( ShortTermSpecificLoudnessLeft, 1 )
[monauralShortTermLoudness(i), ShortTermLoudnessLeft(i), ShortTermLoudnessRight(i)] = moore2016_binauralloudness( ShortTermSpecificLoudnessLeft(i,:), ShortTermSpecificLoudnessRight(i,:) );
end
%calculate the long term loudness
LongTermLoudnessLeft = moore2016_longtermloudness( ShortTermLoudnessLeft );
LongTermLoudnessRight = moore2016_longtermloudness( ShortTermLoudnessRight );
longtermloudness = LongTermLoudnessLeft + LongTermLoudnessRight;
loudness = max(longtermloudness);
shorttermloudness = ShortTermLoudnessLeft + ShortTermLoudnessRight;