This documentation page applies to an outdated AMT version (1.3.0). Click here for the most recent page.
function [out, clean, noisy] = relanoiborra2019(insig_clean, insig_noisy, fs, varargin)
%RELANOIBORRA2019 Modulation filterbank (based on DRNL)
%
% Usage: out = relanoiborra2019(insig_clean, insig_noisy, fs, varargin)
% out = relanoiborra2019(insig_clean, insig_noisy, fs, flow, fhigh, varargin)
% [out, clean, noisy] = relanoiborra2019([..])
%
% Input parameters:
% insig_clean : clean speech template signal
% insig_noisy : noisy speech target signal
% fs : Sampling frequency
% flow : lowest center frequency of auditory filterbank
% fhigh : highest center frequency of auditory filterbank
% N_org : length of original sentence. Will be double the length
% of 'insig_clean' if not provided.
% sbj : subject profile for drnl definition. default: 'NH'
%
% Output parameters:
% out : correlation metric structure
% The out structure has the following fields:
%
% - .dint : correlation values for each modulation band
%
% - .dsegments : correlation values from each time window and mod. band
%
% - .dfinal : final (averaged) correlation
%
% This script builds the internal representations of the template and target signals
% according to the CASP model (see references).
% The code is based on previous versions of authors: Torsten Dau, Morten
% Leve Jepsen, Boris Kowalesky and Peter L. Soendergaard.
% The model has been optimized to work with speech signals, and the
% preprocesing and variable names follow this principle. The model is
% also designed to work with broadband signals. In order to avoid undesired
% onset enhancements in the adaptation loops, the model expects to recive a
% prepaned signal to initialize them.
%
%
% References:
% H. Relaño-Iborra, J. Zaar, and T. Dau. A speech-based computational
% auditory signal processing and perception model. J. Acoust. Soc. Am.,
% 146(5), 2019.
%
% M. Jepsen, S. Ewert, and T. Dau. A computational model of human
% auditory signal processing and perception. J. Acoust. Soc. Am., 124(1),
% 2008.
%
%
% See also: ihcenvelope relanoiborra2019_drnl
% relanoiborra2019_mfbtd joergensen2013_sim
% exp_osses2022 dau1997
%
%
% Url: http://amtoolbox.org/amt-1.3.0/doc/models/relanoiborra2019.php
% #StatusDoc: Good
% #StatusCode: Good
% #Verification: Unknown
% #Requirements: M-Stats M-Signal M-Control
% #Author: Helia Relano Iborra (March 2019): v4.0 provided to the AMT team
% #Author: Clara Hollomey (2021): adapted to the AMT
% #Author: Piotr Majdak (2021): adapted to the AMT 1.0
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
%% Auditory filtering:
if isoctave
warning(['Currently this model is only fully functional under MATLAB.']);
end
definput.import={'relanoiborra2019'}; % load defaults from arg_relanoiborra2019
[flags,kv] = ltfatarghelper({'flow','fhigh'},definput,varargin);
if isempty(kv.N_org), N_org=length(insig_clean); else N_org=kv.N_org; end
[clean_mfb, fc_mod, clean_afb, fc] = relanoiborra2019_featureextraction(insig_clean, fs, 'argimport',flags,kv);
[noisy_mfb, ~, noisy_afb] = relanoiborra2019_featureextraction(insig_noisy, fs, 'argimport',flags,kv);
out = relanoiborra2019_decision(clean_mfb((N_org+1):end, :, :), noisy_mfb((N_org+1):end, :, :), fs, fc, fc_mod,'argimport',flags,kv);
clean.afb = clean_afb;
clean.fc = fc;
clean.mfb = clean_mfb;
clean.fmod = fc_mod;
noisy.afb = noisy_afb;
noisy.fc = fc;
noisy.mfb = noisy_mfb;
noisy.fmod = fc_mod;
% [out,fc,mfc] = relanoiborra2019_preproc(insig, fs, varargin);
% varargout{1} = fc;
% varargout{2} = mfc;