This documentation page applies to an outdated AMT version (1.4.0). Click here for the most recent page.
function z = breebaart2001_eicell(insig,fs,tau,ild,varargin)
%BREEBAART2001_EICELL Excitation-inhibition cell computation for the Breebaart model
% Usage: y = breebaart2001_eicell(insig,fs,tau,ild)
%
% Input parameters:
% insig : input signal, must be an [n by 2] matrix
% fs : sampling rate of input signal
% tau : characteristic delay in seconds (positive: left is leading)
% ild : characteristic ILD in dB (positive: left is louder)
%
% Output parameters:
% y : EI-type cell output as a function of time
%
% BREEBAART2001_EICELL(insig,fs,tau,ild) compute the excitation-inhibition model on
% the input signal insig. The cell to be modelled responds to a delay
% tau (measured in seconds) and interaural-level difference ild*
% measured in dB.
%
% BREEBAART2001_EICELL takes the following optional parameters:
%
% 'tc',tc Temporal smoothing constant. Default value is 30e-3.
%
% 'rc_a',rc_a Parameter a for dynamic range compression.
% Default value is a=.1.
%
% 'rc_b',rc_b Parameter b for dynamic range compression.
% Default value is b=0.00002.
%
% 'ptau',ptau Time constant for p(tau) function. Default value is 2.2e-3.
%
% See also: breebaart2001
%
% Url: http://amtoolbox.org/amt-1.4.0/doc/modelstages/breebaart2001_eicell.php
% #StatusDoc: Perfect
% #StatusCode: Perfect
% #Verification: Verified
% #Requirements: M-Signal
% #Author: Jeroen Breebaart (2011)
% #Author: Peter L. Soendergaard (2011)
% #Author: Martina Kreuzbichler (2016)
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
if nargin<4
error('%s: Too few input arguments.',upper(mfilename));
end;
definput.import={'breebaart2001_eicell'};
[flags,kv]=ltfatarghelper({},definput,varargin);
% apply characteristic delay:
n = round( abs(tau) * fs );
l=insig(:,1);
r=insig(:,2);
if tau > 0,
l = [zeros(n,1) ; l(1:end-n)];
else
r = [zeros(n,1) ; r(1:end-n)];
end
% apply characteristic ILD:
l=gaindb(l, ild/2);
r=gaindb(r,-ild/2);
% compute instanteneous EI output:
x = (l - r).^2;
% temporal smoothing:
A=[1 -exp(-1/(fs*kv.tc))];
B=[1-exp(-1/(fs*kv.tc)) ];
y= filtfilt(B,A,x);% / ( (1-exp(-1/(fs*tc)))/2 );
% compressive I/O: Scale signal by 200. This approximately
% results in JNDs of 1 in the output
z = exp(-abs(tau)/kv.ptau) * kv.rc_a * log(kv.rc_b * y + 1);
% exp(-abs(tau)/0.0022) as in Larsen 2010
% 10^(-abs(tau)/0.005) as in Breebaart 2001a
% log10(kv.rc_b * y + 1) as in Davidson 2009