function [data,itd] = data_pausch2022(varargin)
%DATA_PAUSCH2022 Results from Pausch et al. (2022)
%
% Usage: [data,itd] = data_pausch2022()
% [data,itd] = data_pausch2022(flags)
% weights = data_pausch2022('weights', flags)
% features = data_pausch2022('features', flags)
%
% Input parameters:
% flags : select the type of spatial transfer function (STF) and model, see below.
%
% Output parameters:
% data: Structure with the STFs:
%
% - id: the participant ID if flag is 'hrtf', 'hartf_front', or 'hartf_rear'
%
% - sofa: individual STFs as a SOFA structure if flag is 'hrtf', 'hartf_front', or 'hartf_rear'
%
% itd: Estimated ITDs for directions in the horizontal plane:
%
% - itd_hor: ITDs (in s)
%
% - itd_max: maximum ITD (in s)
%
% - itd_arg_max_idx: index of the argument of the the maximum ITD
%
% - itd_arg_max_phi: argument of the the maximum ITD (in deg)
%
% - itd_hor_mean: direction-dependent mean ITDs across participants (in s)
%
% - itd_hor_std: direction-dependent standard deviation of ITDs across participants (in s)
%
% - bp_fc_low: lower cut-off frequency (Hz) of the bandpass filter applied before estimating the ITDs
%
% - bp_fc_high: upper cut-off frequency (Hz) of the bandpass filter applied before estimating the ITDs
%
%
% weights: Matrix of (M*P+1) x N polynomial regression weights (degree of P=4)
% to be applied on a subset of M=5 individual features.
% For the model pausch, N=4. For other models, N=1.
%
% features: Individual anthropometric features and subject IDs as in Pausch et al. (2022)
%
%
% DATA_PAUSCH2022(...) returns spatial transfer function (STFs) and
% ITDs calculated for a specified model.
%
% DATA_PAUSCH2022('weights',...) returns the polynomial regression weights.
%
% DATA_PAUSCH2022('features',...) returns the individual features.
%
%
% The following STFs flags can be selected:
%
% 'hrtf' load individual HRTF datasets
% 'hartf_front' load invidual front HARTF datasets (default)
% 'hartf_rear' load invidual rear HARTF datasets
%
%
% The following ITD model flags can be selected (only required if weights are
% selected):
%
% 'pausch2022' hybrid ITD model by Pausch et al. (2022) (default)
% 'kuhn1977' analytic ITD model by Kuhn (1977)
% 'woodworth1954' analytic ITD model by Woodworth and Schlosberg (1954)
% 'aaronson2014' analytic ITD model by Woodworth and Schlosberg (1954)
% extended by Aaronson and Hartmann (2014)
%
%
% Additional key/value pairs include:
%
% 'bp_fc_low' lower cut-off frequency (Hz) of the bandpass filter
% applied before estimating the ITDs (default: []) [double]
% 'bp_fc_high' upper cut-off frequency (Hz) of the bandpass filter
% applied before estimating the ITDs (default: []) [double]
%
% Further information on key/value pairs can be found in arg_pausch2022.m
%
%
% Requirements:
% -------------
%
% 1) SOFA Toolbox from http://sourceforge.net/projects/sofacoustics
% for Matlab
%
% 2) Data in auxdata/pausch2022 (downloaded on the fly)
%
% See also: pausch2022 exp_pausch2022
%
% References:
% F. Pausch, S. Doma, and J. Fels. Hybrid multi-harmonic model for the
% prediction of interaural time differences in individual behind-the-ear
% hearing-aid-related transfer functions. Acta Acust., 6:34, 2022.
% [1]http ]
%
% G. F. Kuhn. Model for the interaural time differences in the azimuthal
% plane. The Journal of the Acoustical Society of America,
% 62(1):157--167, 1977. [2]arXiv | [3]http ]
%
% R. S. Woodworth and H. Schlosberg. Experimental psychology, Rev. ed.
% Holt, Oxford, England, 1954.
%
% N. L. Aaronson and W. M. Hartmann. Testing, correcting, and extending
% the Woodworth model for interaural time difference. The Journal of the
% Acoustical Society of America, 135(2):817--823, 2014. [4]arXiv |
% [5]http ]
%
% References
%
% 1. https://doi.org/10.1051/aacus/2022020
% 2. http://arxiv.org/abs/https://doi.org/10.1121/1.381498
% 3. https://doi.org/10.1121/1.381498
% 4. http://arxiv.org/abs/https://doi.org/10.1121/1.4861243
% 5. https://doi.org/10.1121/1.4861243
%
%
% Url: http://amtoolbox.org/amt-1.5.0/doc/data/data_pausch2022.php
% #Author: Florian Pausch (2022): Integration in the AMT
% #Author: Piotr Majdak (2023): Documentation expanded
% #Author: Florian Pausch (2023): Code improvements
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
%% Parse flags and keyvals
definput.import = {'pausch2022','amt_cache'};
definput.flags.weights = {'no_weights','weights'};
definput.flags.features = {'no_features','features'};
[flags,kv] = ltfatarghelper({},definput,varargin);
%% Load the polynomial-regression weights
if flags.do_weights
if flags.do_kuhn1977 || flags.do_woodworth1954 || flags.do_aaronson2014
if flags.do_hrtf, fn = 'weights_hrtf_mod1_2plus'; end
if flags.do_hartf_front, fn = 'weights_hartf_mod1_2plus'; end
if flags.do_hartf_rear, fn = 'weights_hartf_mod1_2plus'; end
end
if flags.do_pausch2022
if flags.do_hrtf, fn = 'weights_hrtf_mod3'; end
if flags.do_hartf_front, fn = 'weights_fhartf_mod3'; end
if flags.do_hartf_rear, fn = 'weights_rhartf_mod3'; end
end
data = amt_load('pausch2022','weights.mat',fn);
data = data.(fn);
amt_disp([mfilename,': Loaded polynomial regression weights for model ',flags.type_mod,...
' and ',flags.type_stf,'.'])
end
%% Neither weights nor features: Load the individual directional datasets as per flag type_stf
if ~flags.do_weights && ~flags.do_features
switch flags.type_stf
case 'hrtf'
[itd,flag_stf,bp_fc_low,bp_fc_high] = amt_cache('get', ...
['hrtf_bp_',...
num2str(kv.bp_fc_low),'_',num2str(kv.bp_fc_high),'_Hz'], flags.cachemode);
case 'hartf_front'
[itd,flag_stf,bp_fc_low,bp_fc_high] = amt_cache('get', ...
['hartf_front_bp_',...
num2str(kv.bp_fc_low),'_',num2str(kv.bp_fc_high),'_Hz'], flags.cachemode);
otherwise
[itd,flag_stf,bp_fc_low,bp_fc_high] = amt_cache('get', ...
['hartf_rear_bp_',...
num2str(kv.bp_fc_low),'_',num2str(kv.bp_fc_high),'_Hz'], flags.cachemode);
end
fileNames = struct();
num_part = 30;
phi_vec = 0:180;
if flags.do_hrtf
for id=1:num_part
fileNames(id).name = ['id',num2str(id,'%02d'),'_HRTF.sofa'];
end
elseif flags.do_hartf_front
for id=1:num_part
fileNames(id).name = ['id',num2str(id,'%02d'),'_HARTF_front.sofa'];
end
elseif flags.do_hartf_rear
for id=1:num_part
fileNames(id).name = ['id',num2str(id,'%02d'),'_HARTF_rear.sofa'];
end
end
amt_disp([mfilename,': Loading ',upper(flags.type_stf),' datasets...'])
data = struct('id',{},'sofa',{});
for idx = 1:length(fileNames)
data(idx).id = idx;
data(idx).sofa = amt_load('pausch2022',fileNames(idx).name);
end
amt_disp([mfilename,': Finished loading of ',upper(flags.type_stf),' datasets.'])
if isempty(flag_stf) || ~isequal(bp_fc_low,kv.bp_fc_low) || ~isequal(bp_fc_high,kv.bp_fc_high)
% Estimate the ITDs for directions in the horizontal plane, and calculate mu+/-std
idx_dir_hor = data(1).sofa.SourcePosition(:,2)==0;
num_dir_hor = sum(idx_dir_hor);
itd = struct('itd_hor',{},'itd_max',{},'itd_arg_max_idx',{},...
'itd_arg_max_phi',{},'itd_hor_mean',{},'itd_hor_std',{});
itd(idx).itd_hor = zeros(num_dir_hor,1);
amt_disp([mfilename,': Estimating ITDs between ',num2str(kv.bp_fc_low),...
'-',num2str(kv.bp_fc_high),' Hz in ',upper(flags.type_stf),' datasets...'])
itd_hor = zeros(num_dir_hor,num_part);
fs = data(1).sofa.Data.SamplingRate;
for idx=1:num_part
data_hor = data(idx).sofa.Data.IR(idx_dir_hor,:,:);
% apply low-pass pre-filter
filter_order = 10;
f_cutoff = 1.6e3;
h_lp = fdesign.lowpass('n,f3db',filter_order,f_cutoff,fs);
Filter.Hd = design(h_lp,'butter');
data_filt = filter(Filter.Hd, data_hor, 3);
% estimate ITDs
itd(idx).itd_hor = itdestimator(fliplr(data_filt),...
'pausch2022',...
'fs',fs,...
'lower_cutfreq',500,...
'upper_cutfreq',1.5e3);
% remove ITD outliers in HRTF datasets measured from participant 8
if idx==8 && strcmp(flags.type_stf,'hrtf')
itd(idx).itd_hor(18:21) = NaN;
temp = itd(idx).itd_hor;
x = 1:numel(temp);
itd(idx).itd_hor(18:21) = pchip(x(~isnan(temp)), temp(~isnan(temp)), x(isnan(temp)));
end
% store max(itd)
[itd(idx).itd_max,itd(idx).itd_arg_max_idx] = max(itd(idx).itd_hor);
% store arg_max_phi(itd)
itd(idx).itd_arg_max_phi = phi_vec(itd(idx).itd_arg_max_idx);
% temporarily store ITD data for the calculation of mean/std
itd_hor(:,idx) = itd(idx).itd_hor;
end
[itd.itd_hor_mean] = deal(mean(itd_hor,2));
[itd.itd_hor_std] = deal(std(itd_hor,0,2));
amt_disp([mfilename,': Finished ITD estimations between ',num2str(kv.bp_fc_low),...
'-',num2str(kv.bp_fc_high),' Hz in ',upper(flags.type_stf),' datasets.'])
switch flags.type_stf
case 'hrtf'
amt_cache('set', ['hrtf_bp_',...
num2str(kv.bp_fc_low),'_',num2str(kv.bp_fc_high),'_Hz'], ...
itd, flags.type_stf, kv.bp_fc_low, kv.bp_fc_high);
case 'hartf_front'
amt_cache('set', ['hartf_front_bp_',...
num2str(kv.bp_fc_low),'_',num2str(kv.bp_fc_high),'_Hz'], ...
itd, flags.type_stf, kv.bp_fc_low, kv.bp_fc_high);
otherwise
amt_cache('set', ['hartf_rear_bp_',...
num2str(kv.bp_fc_low),'_',num2str(kv.bp_fc_high),'_Hz'], ...
itd, flags.type_stf, kv.bp_fc_low, kv.bp_fc_high);
end
end
end
%% Load the individual features
if flags.do_features
data = amt_load('pausch2022','features.mat');
data = data.features;
if isempty(data)
amt_disp('The features are not available when offline.')
end
end
end