This documentation page applies to an outdated AMT version (1.5.0). Click here for the most recent page.
function varargout = exp_bruce2018(varargin)
%EXP_BRUCE2018 Experiments from Bruce et al. 2018
%
% exp_bruce2011(fig) reproduce Fig. no. fig from the Bruce et
% al. 2018 paper.
%
% The following flags can be specified;
%
% 'fig7b' Reproduce Fig. 7 panel b.
%
% 'fig8b' Reproduce Fig. 8, panel b.
%
% 'fig10' Reproduce Fig. 10.
%
%
% Examples:
% ---------
%
% To display Fig. 7b use :
%
% exp_bruce2018('fig7b');
%
% To display Fig. 8b use :
%
% exp_bruce2018('fig8b');
%
% To display Fig. 10 use :
%
% exp_bruce2018('fig10');
%
% See also: bruce2018
%
% Url: http://amtoolbox.org/amt-1.5.0/doc/experiments/exp_bruce2018.php
% #Author: Ian Bruce
% #Author: Clara Hollomey (2021): adaptations for AMT
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
definput.import={'amt_cache'};
definput.flags.type={'missingflag', ...
'fig7b', ... % 'popratelevel'
'fig8b', ... % 'fanofactor'
'fig10'};
definput.flags.plot={'plot','no_plot'};
flags = ltfatarghelper({},definput,varargin);
if flags.do_missingflag
flagnames=[sprintf('%s, ',definput.flags.type{2:end-2}),...
sprintf('%s or %s',definput.flags.type{end-1},definput.flags.type{end})];
error('%s: You must specify one of the following flags: %s.',upper(mfilename),flagnames);
end;
%%% Common parameters:
Fs = 100e3; % sampling rate in Hz (must be 100, 200 or 500 kHz)
dt=1/Fs; % each time in length
%% demo_bruce2018_popratelevel.m
if flags.do_fig7b
numcfs = 1;
CFs = 8e3; % CF in Hz;
numsponts = [1 1 3]; % reduce the number of ANFs to have a shorter simulation time
%numsponts = [20 20 60];
stimdbs = -10:5:100;
numstims = length(stimdbs);
rates = zeros(numcfs,sum(numsponts),numstims);
cohc = 1.0; % normal ohc function
cihc = 1.0; % normal ihc function
species = 'cat'; % cat or human
implnt = 'approxPL'; % 'approxPL', or'actualPL'
noiseType = 'varFGn'; % 'fixedFGn', or'varFGn'
% stimulus parameters
T = 50e-3; % stimulus duration in seconds
rt = 2.5e-3; % rise/fall time in seconds
% PSTH parameters
psthbinwidth = 0.5e-3; % binwidth in seconds;
nrep = 100; % number of stimulus repetitions - Liberman (1978) used 10;
t = 0:dt:T-dt; % time vector
mxpts = length(t);
irpts = rt*Fs;
pin = sqrt(2)*sin(2*pi*CFs*t); % unramped stimulus
pin(1:irpts) = pin(1:irpts).*(0:(irpts-1))/irpts;
pin((mxpts-irpts):mxpts) = pin((mxpts-irpts):mxpts).*(irpts:-1:0)/irpts;
figure
for ii = 1:numstims
pin=scaletodbspl(pin,stimdbs(ii));
output = bruce2018(pin, round(1/dt), CFs, 'nrep', nrep, ...
'numL', numsponts(1), 'numM',numsponts(2) , 'numH',numsponts(3) ,...
'psthbinwidth_mr', psthbinwidth, 'reptime', 2, ...
noiseType, implnt, 'cohcs', cohc, 'cihcs', cihc, species, 'outputPerSynapse');
psth = output.psth_ft;
psthbins = round(psthbinwidth*Fs); % number of psth bins per psth bin
pr = zeros(size(psth, 3), length(psth)/psthbins);
psTH = zeros(size(pr));
ronset = round(1.5e-3/psthbinwidth)+1;
roffset = round(T/psthbinwidth);
for jj = 1: size(psth, 3)
% pr of spike in each bin
pr(jj,:) = sum(reshape(psth(:,:,jj),psthbins,length(psth)/psthbins))/nrep;
psTH(jj,:) = pr(jj,:)/psthbinwidth; % psth in units of /s
rates(1,jj, ii)= mean(psTH(jj,ronset:ronset+roffset));
end
end
for spontlp = 1:sum(numsponts)
if (spontlp<=numsponts(1))
plot(stimdbs,squeeze(rates(1,spontlp,:)),'r')
hold on
elseif (spontlp<=sum(numsponts([1 2])))
plot(stimdbs,squeeze(rates(1,spontlp,:)),'b')
hold on
else
plot(stimdbs,squeeze(rates(1,spontlp,:)),'m')
hold on
end
end
xlabel('Stimulus Level (dB SPL)')
ylabel('Firing Rate (/s)')
end
%% demo_bruce2018_fanofactor.m
if flags.do_fig8b
% model fiber parameters
%default nerve fiber parameters of the models, therefore not explicitly
%passed to bruce2018
spont = 50; % spontaneous firing rate
tabs = 0.6e-3; % absolute refractory period
trel = 0.6e-3; % baseline mean relative refractory period
CF = 1.5e3; % CF in Hz;
cohc = 1.0; % normal ohc function
cihc = 1.0; % normal ihc function
species = 'cat'; % cat or human (with Shera et al. tuning)
noiseType = 'varFGn'; % variable fGn; for fixed (frozen) fGn: 'fixedFGn'
implnt = 'approxPL'; % approximate
%for actual implementation of the power-law functions in the Synapse: 'actualPL'
% stimulus parameters
F0 = CF; % stimulus frequency in Hz
T = 25; % stimulus duration in seconds
rt = 2.5e-3; % rise/fall time in seconds
stimdb = -inf; % stimulus intensity in dB SPL; set to -inf to get spont activity
numsponts = 10;
numTs = 14;
Ts = logspace(log10(1e-3),log10(10),numTs);
Ts = round(Ts/dt)*dt;
Ft = zeros(numsponts,numTs);
Ft_shuf = zeros(numsponts,numTs);
meanrate = zeros(numsponts,numTs);
% PSTH parameters
nrep = 1; % number of stimulus repetitions (e.g., 50);
t = 0:1/Fs:T-1/Fs; % time vector
mxpts = length(t);
irpts = rt*Fs;
pin = sqrt(2)*20e-6*10^(stimdb/20)*sin(2*pi*F0*t); % unramped stimulus
pin(1:irpts)= pin(1:irpts).*(0:(irpts-1))/irpts;
pin((mxpts-irpts):mxpts)=pin((mxpts-irpts):mxpts).*(irpts:-1:0)/irpts;
pin=scaletodbspl(pin,stimdb);
output = bruce2018(pin, round(1/dt), CF, 'nrep', nrep, 'fsmod', Fs, ...
noiseType, implnt, 'specificSR','numsponts', numsponts, 'spont',spont,'tabs',tabs,'trel',trel,...
'cohcs', cohc, 'cihcs', cihc, 'reptime', 2, species, 'outputPerSynapse');
for trial = 1:numsponts
psth = squeeze(output.psth_ft(:,1, trial));
simtime = length(psth)/Fs;
tvect = 0:1/Fs:simtime-1/Fs;
ISIs = diff(tvect(logical(psth)));
ISIs_shuf = ISIs(randperm(length(ISIs)));
spiketimes_shuf = cumsum(ISIs_shuf);
psth_shuf = histc(spiketimes_shuf,tvect);
for Tlp = 1:numTs
psthbinwidth = Ts(Tlp);
psthbins = round(psthbinwidth*Fs); % number of time bins per Psth bin
numPsthbins = floor(length(psth)/psthbins);
Psth = sum(reshape(psth(1:psthbins*numPsthbins),psthbins,numPsthbins)); %
Psth_shuf = sum(reshape(psth_shuf(1:psthbins*numPsthbins),psthbins,numPsthbins));
Ft(trial,Tlp) = std(Psth)^2/(mean(Psth)+eps);
Ft_shuf(trial,Tlp) = std(Psth_shuf)^2/(mean(Psth_shuf)+eps);
meanrate(trial,Tlp) = mean(Psth)/Ts(Tlp);
end
end
figure
% Plot the calculated Fano factor curve for each trial
loglog(Ts*1e3,Ft)
hold on
% Plot the mean Fano factor curve
loglog(Ts*1e3,mean(Ft),'k-','linewidth',2)
% Plot the calculated Fano factor curves for the shuffled ISIs for each trial
loglog(Ts*1e3,Ft_shuf,'--')
% Plot the calculated Fano factor curves for the shuffled ISIs for each trial
loglog(Ts*1e3,mean(Ft_shuf),'k--','linewidth',2)
ylabel('F(T)')
xlabel('T (ms)')
xlim([1e0 1e4])
ylim([0.2 10])
end
%% FIG 10
if flags.do_fig10 % flags.do_analyticalmeanvarcounts
% Description:
%%% 1. Stimuli:
% Pure tone centred at 8 kHz (CF)
% Duration of 0.25 s (T)
% Presentation level: 20 dB SPL (stimdb)
% Sampling frequency of 100 kHz (Fs)
% Stimuli with 2.5-ms linear ramps (rt)
% The stimuli start after 25 ms (ondelay)
%
%%% 2. Model configuration:
% Normal-hearing configuration: cohc = cihc = 1
% Cat model (species = 1)
% Spontaneous firing rate of 100 spikes/s (spont)
% tabs = trel = 0.6 ms
% Variable fractional Gaussian noise (noiseType = 1)
% Approximate implementation (implnt = 0)
% PSTHs using bin sizes of 0.5 ms, 5 ms, and 50 ms
% Stimuli repeated once each time the model is called (nrep = 1), but the
% model is run 1000 trials (ntrials). PSTHs after the ntrials are assessed
% model parameters
CF = 8e3; % CF in Hz;
cohc = 1.0; % normal ohc function
cihc = 1.0; % normal ihc function
species = 'cat'; % cat or human
noiseType = 1; % variable fGn; or fixed (frozen) fGn
spont = 100; % spontaneous firing rate
tabs = 0.6e-3; % Absolute refractory period
trel = 0.6e-3; % Baseline mean relative refractory period
implnt = 0; % "0" for approximate or "1" for actual power-law implementation
% stimulus parameters
F0 = CF; % stimulus frequency in Hz
T = 0.25; % stimulus duration in seconds
rt = 2.5e-3; % rise/fall time in seconds
stimdb = 20; % stimulus intensity in dB SPL
% PSTH parameters
nrep = 1; % number of stimulus repetitions (e.g., 50);
psthbinwidths = [5e-4 5e-3 5e-2]; % binwidth in seconds;
numpsthbinwidths = length(psthbinwidths);
trials = 1e3;
% trials = 10e3; % higher number of trials gives more accurate estimates but takes longer to run
t = 0:dt:T-dt; % time vector
mxpts = length(t);
irpts = rt*Fs;
ondelay = 25e-3;
onbin = round(ondelay*Fs);
pin = zeros(1,onbin+mxpts);
pin(onbin+1:onbin+mxpts) = sqrt(2)*20e-6*10^(stimdb/20)*sin(2*pi*F0*t); % unramped stimulus
pin(onbin+1:onbin+irpts)= pin(onbin+1:onbin+irpts).*(0:(irpts-1))/irpts;
pin(onbin+(mxpts-irpts):onbin+mxpts)=pin(onbin+(mxpts-irpts):onbin+mxpts).*(irpts:-1:0)/irpts;
pin=scaletodbspl(pin,stimdb);
output = bruce2018(pin, round(1/dt), CF, 'nrep', nrep, 'fsmod', Fs, ... % signal parameters
'varFGn', 'approxPL', species, 'outputPerSynapse', ... % general parameters
'specificSR','numsponts', 1, 'spont',spont, 'tabs',tabs, 'trel',trel, ... % spontaneous rate parameters
'cohcs', cohc, 'cihcs', cihc, 'reptime', 2); % hearing loss parameters
psth = squeeze(output.psth_ft(:, 1,:));
vihc = output.vihc;
meanrate = output.meanrate;
varrate = output.varrate;
timeout = (0:length(psth)-1)*1/Fs;
psthbins = zeros(numpsthbinwidths,1);
psthtime = cell(numpsthbinwidths);
psths = cell(numpsthbinwidths);
mrs = cell(numpsthbinwidths);
vrs = cell(numpsthbinwidths);
for binlp = 1:numpsthbinwidths
psthbins(binlp) = round(psthbinwidths(binlp)*Fs); % number of psth bins per psth bin
psthtime{binlp} = timeout(1:psthbins(binlp):end); % time vector for psth
cnt = sum(reshape(psth,psthbins(binlp),length(psth)/psthbins(binlp))); % spike cnt in each psth bin
mr = mean(reshape(meanrate,psthbins(binlp),length(psth)/psthbins(binlp))); % mean average of theor spike cnt in each psth bin
vr = mean(reshape(varrate,psthbins(binlp),length(psth)/psthbins(binlp))); % mean var of theor spike cnt in each psth bin
psths{binlp}(1,:) = cnt;
mrs{binlp}(1,:) = mr;
vrs{binlp}(1,:) = vr;
end
for lp = 2:trials
amt_disp(['lp = ' int2str(lp) '/' int2str(trials)], 'volatile');
[psth,meanrate,varrate,~,~,~] = bruce2018_synapse(vihc,CF,nrep,dt,noiseType,implnt,spont,tabs,trel);
timeout = (0:length(psth)-1)*1/Fs;
for binlp = 1:numpsthbinwidths
psthbins(binlp) = round(psthbinwidths(binlp)*Fs); % number of psth bins per psth bin
psthtime{binlp} = timeout(1:psthbins(binlp):end); % time vector for psth
cnt = sum(reshape(psth,psthbins(binlp),length(psth)/psthbins(binlp))); % spike cnt in each psth bin
mr = mean(reshape(meanrate,psthbins(binlp),length(psth)/psthbins(binlp))); % mean average of theor spike cnt in each psth bin
vr = mean(reshape(varrate,psthbins(binlp),length(psth)/psthbins(binlp))); % mean var of theor spike cnt in each psth bin
psths{binlp}(lp,:) = cnt;
mrs{binlp}(lp,:) = mr;
vrs{binlp}(lp,:) = vr;
end
end
amt_disp();
for binlp = 1:numpsthbinwidths
if psthbinwidths(binlp)>10e-3
mrksize = 6;
else
mrksize = 2;
end
figure
subplot(2,1,1)
h1 = bar(psthtime{binlp},mean(psths{binlp}),'histc');
set(h1,'edgecolor','k','facecolor',0.8*ones(1,3))
ylabel('E[count]')
xlabel('Time (s)')
hold on
plot(psthtime{binlp}+psthbinwidths(binlp)/2,mean(mrs{binlp})*psthbinwidths(binlp),'ro','markerfacecolor','r','markersize',mrksize,'linewidth',1)
xlim(psthtime{binlp}([1 end]))
title(['PSTH bin width = ' num2str(psthbinwidths(binlp)*1e3,2) 'ms'])
subplot(2,1,2)
h2 = bar(psthtime{binlp},var(psths{binlp}),'histc');
set(h2,'edgecolor','k','facecolor',0.8*ones(1,3))
xlabel('Time (s)')
ylabel('var[count]')
hold on
plot(psthtime{binlp}+psthbinwidths(binlp)/2,mean(vrs{binlp})*psthbinwidths(binlp),'go','markerfacecolor','g','markersize',mrksize,'linewidth',1)
plot(psthtime{binlp}+psthbinwidths(binlp)/2,mean(mrs{binlp})*psthbinwidths(binlp),'bo','markerfacecolor','b','markersize',mrksize,'linewidth',1)
xlim(psthtime{binlp}([1 end]))
end
end