This documentation page applies to an outdated AMT version (1.5.0). Click here for the most recent page.
function varargout = exp_laback2023(varargin)
%EXP_LABACK2023 Figures from Laback (2023)
%
% Usage: exp_laback2023('fig5')
% exp_laback2023('fig5','i_cond',X)
%
% EXP_LABACK2023('fig5') predicts the effect of various types of precursors
% on ILD-based perceived lateralization. It is based on AN model by
% Smalt et al. (2014), which is a binaural version of the
% AN model by Zilany et al. (2014), that
% involves ipsi- and contralateral cochlear compression control via
% efferent feedback.
%
% EXP_LABACK2023('fig5','i_cond',X); displays predictions for the specific
% condition, with X being:
%
% 1 : Condition 'noP'
%
% 2 : Condition 'Central'
%
% 3 : Condition 'Ipsi'
%
% 4 : Condition 'Contra'
%
%
% Examples:
% ---------
%
% To display Fig.5, which shows the predictions for all four models use :
%
% exp_laback2023('fig5');
%
% Note*: The last row of the AMT's Fig. 5 shows results drastically different
% than those in Laback's Fig. 5. The results in other rows also are not
% fully compliant. This is a bug and the AMT Team is working on that
% (see Issue `#247 <https://sourceforge.net/p/amtoolbox/bugs/247/).
% The model status is thus "untrusted" for the moment.
%
% See also: laback2023 smalt2014 zilany2014
%
% References:
% B. Laback. Contextual lateralization based on interaural level
% differences is preshaped by the auditory periphery and predominantly
% immune against sequential segregation. Trends in Hearing,
% 27:23312165231171988, 2023. PMID: 37161352. [1]arXiv | [2]www: ]
%
% C. J. Smalt, M. G. Heinz, and E. A. Strickland. Modeling the
% Time-Varying and Level-Dependent Effects of the Medial Olivocochlear
% Reflex in Auditory Nerve Responses. Journal of the Association for
% Research in Otolaryngology, 15(2):159--173, Apr. 2014. [3]http ]
%
% M. S. A. Zilany, I. C. Bruce, and L. H. Carney. Updated parameters and
% expanded simulation options for a model of the auditory periphery. The
% Journal of the Acoustical Society of America, 135(1):283--286, Jan.
% 2014.
%
% References
%
% 1. http://arxiv.org/abs/ https://doi.org/10.1177/23312165231171988
% 2. https://doi.org/10.1177/23312165231171988
% 3. https://doi.org/10.1007/s10162-013-0430-z
%
%
% Url: http://amtoolbox.org/amt-1.5.0/doc/experiments/exp_laback2023.php
% #Author: Bernhard Laback (2022): Original implementation
% #Author: Clara Hollomey (2023): Adaptations for AMT
% #Author: Alejandro Osses (2023): further adaptations for AMT 1.4
% #Author: Joonas Guevara (2023): Clearer plotting
% #Author: Piotr Majdak (2023): Rewrite to be able to debug in the future.
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
definput.import={'amt_cache'}; % setup the usage of cache mode flags
definput.flags.type = {'missingflag','fig5','fig5ab','fig5cd'};
definput.keyvals.i_cond = [1 2 3 4];
[flags,kv] = ltfatarghelper({},definput,varargin);
if flags.do_missingflag
flagnames=[sprintf('%s, ',definput.flags.type{2:end-2}),...
sprintf('%s or %s',definput.flags.type{end-1},definput.flags.type{end})];
error('%s: You must specify one of the following flags: %s.',upper(mfilename),flagnames);
end
modelreps = 3;
fibtype_str = {'low-SR', 'mid-SR', 'high-SR'};
flags_MOC={'no_MOC','MOC'};
ILD_vector = 0:2:10; % vector of ILD's
num_ILD = length(ILD_vector); % remove kv.NrILD
idxs_cond = kv.i_cond;
num_cond = length(idxs_cond);
%% Predictions based on the model Smalt et al. (2014)
if flags.do_fig5 || flags.do_fig5ab
[Results_Ave_LOW, Results_Ave_MID, Results_Ave_HIGH,...
Results_STD_LOW, Results_STD_MID, Results_STD_HIGH] = ...
amt_cache('get','fig5 model smalt2014',flags.cachemode);
if isempty(Results_Ave_LOW)
expdefinput.import = {'laback2023'};
expdefinput.importdefaults={'exp1'};
[fg,kv] = ltfatarghelper({},expdefinput,{}); % obtained the keyvalues
% Taking some variables out of the keyvalues (easier for debugging)
model = kv.model;
fs = kv.fs;
Modeldelay = 240; %Delay between stimulus and model response (in samples) [default: 240]
% Define time vectors for P and T
nvec = 0: 1/fs : kv.DurN-1/fs;
tvec = 0: 1/fs : kv.DurT-1/fs;
% Memory allocation for results matrices
ResultMatrixvecLOW = zeros(modelreps,num_cond*2,num_ILD);
ResultMatrixvecMID = zeros(modelreps,num_cond*2,num_ILD);
ResultMatrixvecHIGH = zeros(modelreps,num_cond*2,num_ILD);
NrFiberTypes = length(kv.spontvec);
for i_fibtype=1:NrFiberTypes %three fiber types (based on SR)
amt_disp(sprintf('Model:smalt2014; Fibertype=%s', fibtype_str{i_fibtype}));
for i_modelreps=1:modelreps %loop for repetition
amt_disp(sprintf('\tRepetition %.0f of %.0f', i_modelreps,modelreps));
% Variables containing the results per condition and ILD.
ResultMatrix = nan(num_cond*2,num_ILD); % 8=2*4 conditions
for i_cond = idxs_cond %loop for four stimulus conditions (1: noP, 2: Central, 3: Ipsi, 4: Contra)
diffvec = zeros(2, num_ILD);
switch i_cond %Define precursor conditions
case 1 % no precursor
precmode = 0; %precursor mode: 0 = without precursor, 1 = with precursor
ILDNoise = 0; %ILD of precursor noise, positive value favoring left ear
PrecITD_side = [];
PrecITD_t= [];
case 2 % diotic precursor
precmode = 1;
ILDNoise = 0;
PrecITD_side = 0;
PrecITD_t=0;
case 3 % precursor favoring LEFT ear (ipsilateral, because target is always left leading)
precmode = 1;
ILDNoise = kv.PrecILD;
PrecITD_side = -1;
PrecITD_t=kv.PrecITD;
case 4 % precursor favoring right ear (contralater, because target is always left leading)
precmode = 1;
ILDNoise = -1*kv.PrecILD;
PrecITD_side = 1;
PrecITD_t=kv.PrecITD;
end
ILDNoiseLin = 10^(ILDNoise/20);
[stimTarg, ~, noiseILDvec] = sig_laback2023(precmode,...
tvec, nvec, ILDNoiseLin, PrecITD_side, PrecITD_t, model, 'SubExp',0);
% Run the models
for MOCstat=1:2 % NoMOC and MOC
for i_ILD=1:num_ILD
ILD = ILD_vector(i_ILD); % dB, for calculating all ILDs around zero: add -12
ILD_linear = 10^(ILD/20);
%Apply ILD
stim = stimTarg*sqrt(ILD_linear); %positive ILD value enhances left ear
stim(:,2) = stimTarg/sqrt(ILD_linear);
% add precursor if required
if precmode == 1 % used in cond=2, 3, 4, zilany2014
targR = stim(:,2);
stim = [noiseILDvec(:,1); kv.gapvec; stim(:,1)]; %stimnoise
stim(:,2) = [noiseILDvec(:,2); kv.gapvec; targR];
end
output = laback2023(stim,fs,'argimport',fg,kv,'fiberType',i_fibtype,'precmode',precmode, ...
'Modeldelay',Modeldelay,'Onset',kv.Onset, ...
'noiseILDvec',noiseILDvec,'length_stimTarg',length(stimTarg), ... % flags from the stimuli
flags_MOC{MOCstat});
diffvec(MOCstat, i_ILD) = output.diffvec;
end % for i_ILD
end % for MOCstat
ResultMatrix(i_cond*2-1:i_cond*2,:) = diffvec(1:2,:);
end % i_cond
switch i_fibtype %various P conditions
case 1
ResultMatrixvecLOW(i_modelreps,:,:)=ResultMatrix;
case 2
ResultMatrixvecMID(i_modelreps,:,:)=ResultMatrix;
case 3
ResultMatrixvecHIGH(i_modelreps,:,:)=ResultMatrix;
end
end %i_modelreps
end %i_fibtype
%% Calculate Mean and SD across model repetitions
Results_Ave_LOW = zeros(num_ILD, length(ResultMatrix(:,1)));
Results_STD_LOW = Results_Ave_LOW;
Results_Ave_MID = Results_Ave_LOW;
Results_STD_MID = Results_Ave_LOW;
Results_Ave_HIGH = Results_Ave_LOW;
Results_STD_HIGH = Results_Ave_LOW;
for ILDidx=1:i_ILD
for condvec=1:length(ResultMatrix(:,1))
Results_Ave_LOW(ILDidx,condvec) = mean(ResultMatrixvecLOW(:,condvec,ILDidx));
Results_STD_LOW(ILDidx,condvec) = std(ResultMatrixvecLOW(:,condvec,ILDidx));
Results_Ave_MID(ILDidx,condvec) = mean(ResultMatrixvecMID(:,condvec,ILDidx));
Results_STD_MID(ILDidx,condvec) = std(ResultMatrixvecMID(:,condvec,ILDidx));
Results_Ave_HIGH(ILDidx,condvec) = mean(ResultMatrixvecHIGH(:,condvec,ILDidx));
Results_STD_HIGH(ILDidx,condvec) = std(ResultMatrixvecHIGH(:,condvec,ILDidx));
end
end
amt_cache('set','fig5 model smalt2014',Results_Ave_LOW, Results_Ave_MID, Results_Ave_HIGH,...
Results_STD_LOW, Results_STD_MID, Results_STD_HIGH);
end
%Plotting_MOC_noLSO
W=[83 17 0]; %Weighting Coefficients for Low-, Mid-, and High-SR fibers
axy=[-15 75; -29 149; -29 149; -15 75];
tit='NoPL\_MOC\_NoLSO';
local_plot(ILD_vector, W, axy, tit, ...
Results_Ave_LOW(:,2:2:8), Results_Ave_MID(:,2:2:8), Results_Ave_HIGH(:,2:2:8), ...
Results_STD_LOW(:,2:2:8), Results_STD_MID(:,2:2:8), Results_STD_HIGH(:,2:2:8));
%Plotting_noMOC_noLSO
W=[66 0 34]; %Weighting Coefficients for Low-, Mid-, and High-SR fibers
axy=[-15 75; -15 75; -15 75; -15 75];
tit='NoPL\_NoMOC\_NoLSO';
local_plot(ILD_vector, W, axy, tit, ...
Results_Ave_LOW(:,1:2:7), Results_Ave_MID(:,1:2:7), Results_Ave_HIGH(:,1:2:7), ...
Results_STD_LOW(:,1:2:7), Results_STD_MID(:,1:2:7), Results_STD_HIGH(:,1:2:7));
end % if fig5ab
%% Prediction based on the model Zilany et al. (2014)
if flags.do_fig5 || flags.do_fig5cd
[Results_Ave_LOW, Results_STD_LOW, Results_Ave_MID, Results_STD_MID,...
Results_Ave_HIGH, Results_STD_HIGH] = ...
amt_cache('get','fig5 model zilany2014',flags.cachemode);
if isempty(Results_Ave_LOW)
expdefinput.import = {'laback2023'};
expdefinput.importdefaults={'exp2'};
[fg,kv] = ltfatarghelper({},expdefinput,{}); % obtained the keyvalues
% Taking some variables out of the keyvalues (easier for debugging)
fs = kv.fs;
Modeldelay = 400; %Delay between stimulus and model response (in samples) [default: 240]
% Define time vectors for P and T
nvec = 0: 1/fs : kv.DurN-1/fs;
tvec = 0: 1/fs : kv.DurT-1/fs;
% Memory allocation for results matrices
ResultMatrixvecLOW = zeros(modelreps,num_cond*2,num_ILD);
ResultMatrixvecMID = zeros(modelreps,num_cond*2,num_ILD);
ResultMatrixvecHIGH = zeros(modelreps,num_cond*2,num_ILD);
NrFiberTypes = length(kv.spontvec);
for i_fibtype=1:NrFiberTypes %three fiber types (based on SR)
amt_disp(sprintf('Model: zilany2014; Fibertype=%s', fibtype_str{i_fibtype}));
for i_modelreps=1:modelreps %loop for repetition
amt_disp(sprintf('\tRepetition %.0f of %.0f', i_modelreps,modelreps));
% Variables containing the results per condition and ILD.
ResultMatrix = nan(num_cond*2,num_ILD); % 8=2*4 conditions
for i_cond = idxs_cond %loop for four stimulus conditions (1: no T, 2:diotic P, 3: ipsi P, 4: contra P)
diffvec = zeros(2, num_ILD);
%Define precursor conditions
switch i_cond
case 1 % no precursor
precmode = 0; %precursor mode: 0 = without precursor, 1 = with precursor
ILDNoise = 0; %ILD of precursor noise, positive value favoring left ear
ILDNoiseLin = 10^(ILDNoise/20);
PrecITD_side = [];
PrecITD_t= [];
case 2 % diotic precursor
precmode = 1;
ILDNoise = 0;
ILDNoiseLin = 10^(ILDNoise/20);
PrecITD_side = 0;
PrecITD_t=0;
case 3 % precursor favoring LEFT ear (ipsilateral, because target is always left leading)
precmode = 1;
ILDNoise = kv.PrecILD;
ILDNoiseLin = 10^(ILDNoise/20);
PrecITD_side = -1;
PrecITD_t=kv.PrecITD;
case 4 % precursor favoring right ear (contralater, because target is always left leading)
precmode = 1;
ILDNoise = kv.PrecILD*-1;
ILDNoiseLin = 10^(ILDNoise/20);
PrecITD_side = 1;
PrecITD_t=kv.PrecITD;
end
[stimTarg, ~, noiseILDvec] = sig_laback2023(precmode,...
tvec, nvec, ILDNoiseLin, PrecITD_side, PrecITD_t, kv.model, 'SubExp',0);
%% Run the models
for MOCstat=1:2 % noMOC and MOC
for i_ILD=1:num_ILD
ILD = ILD_vector(i_ILD); % dB, for calculating all ILDs around zero: add -12
ILD_linear = 10^(ILD/20);
%Apply ILD
stim = stimTarg*sqrt(ILD_linear); %positive ILD value enhances left ear
stim(:,2) = stimTarg/sqrt(ILD_linear);
% add precursor if required
if precmode == 1 % used in cond=2, 3, 4, zilany2014
targR = stim(:,2);
stim = [noiseILDvec(:,1); kv.gapvec; stim(:,1)]; %stimnoise
stim(:,2) = [noiseILDvec(:,2); kv.gapvec; targR];
end
output = laback2023(stim,fs,'argimport',fg,kv,'fiberType',i_fibtype,'precmode',precmode, ...
'Modeldelay',Modeldelay,'Onset',kv.Onset, ...
'noiseILDvec',noiseILDvec,'length_stimTarg',length(stimTarg), ... % flags from the stimuli
flags_MOC{MOCstat});
diffvec(MOCstat, i_ILD) = output.diffvec;
end % for i_ILD
end % for MOCstat
ResultMatrix(i_cond*2-1:i_cond*2,:) = diffvec(1:2,:);
end % i_cond
%various P conditions
switch i_fibtype
case 1
ResultMatrixvecLOW(i_modelreps,:,:)=ResultMatrix;
case 2
ResultMatrixvecMID(i_modelreps,:,:)=ResultMatrix;
case 3
ResultMatrixvecHIGH(i_modelreps,:,:)=ResultMatrix;
end
end %repetition
end % i_fibtype
%% Calculate Mean and SD across model repetitions
Results_Ave_LOW = zeros(i_ILD, length(ResultMatrix(:,1)));
Results_STD_LOW = zeros(i_ILD, length(ResultMatrix(:,1)));
Results_Ave_MID = zeros(i_ILD, length(ResultMatrix(:,1)));
Results_STD_MID = zeros(i_ILD, length(ResultMatrix(:,1)));
Results_Ave_HIGH = zeros(i_ILD, length(ResultMatrix(:,1)));
Results_STD_HIGH = zeros(i_ILD, length(ResultMatrix(:,1)));
for ILDidx=1:i_ILD
for condvec=1:length(ResultMatrix(:,1))
Results_Ave_LOW(ILDidx,condvec) = mean(ResultMatrixvecLOW(:,condvec,ILDidx));
Results_STD_LOW(ILDidx,condvec) = std(ResultMatrixvecLOW(:,condvec,ILDidx));
Results_Ave_MID(ILDidx,condvec) = mean(ResultMatrixvecMID(:,condvec,ILDidx));
Results_STD_MID(ILDidx,condvec) = std(ResultMatrixvecMID(:,condvec,ILDidx));
Results_Ave_HIGH(ILDidx,condvec) = mean(ResultMatrixvecHIGH(:,condvec,ILDidx));
Results_STD_HIGH(ILDidx,condvec) = std(ResultMatrixvecHIGH(:,condvec,ILDidx));
end
end
amt_cache('set','fig5 model zilany2014', ...
Results_Ave_LOW, Results_STD_LOW, Results_Ave_MID, Results_STD_MID,...
Results_Ave_HIGH, Results_STD_HIGH);
end
%Plotting_MOC_noLSO
W=[70 0 30]; %Weighting Coefficients for Low, Mid, and High-SR fibers
axy=[-4.9 24.9; -15 75; -4.9 24.9; -4.9 24.9];
tit='PL\_NoMOC\_NoLSO';
local_plot(ILD_vector, W, axy, tit, ...
Results_Ave_LOW(:,2:2:8), Results_Ave_MID(:,2:2:8), Results_Ave_HIGH(:,2:2:8), ...
Results_STD_LOW(:,2:2:8), Results_STD_MID(:,2:2:8), Results_STD_HIGH(:,2:2:8));
%Plotting_noMOC_LSO
W=[73 27 0]; %Weighting Coefficients for Low, Mid, and High-SR fibers
axy=[-15 75; -15 75; -15 75; -15 75];
tit='PL\_NoMOC\_LSO';
local_plot(ILD_vector, W, axy, tit, ...
Results_Ave_LOW(:,1:2:7), Results_Ave_MID(:,1:2:7), Results_Ave_HIGH(:,1:2:7), ...
Results_STD_LOW(:,1:2:7), Results_STD_MID(:,1:2:7), Results_STD_HIGH(:,1:2:7));
end % if fig5cd
function local_plot(ILDvec, W, axy, tit, ...
Results_Ave_LOW, Results_Ave_MID, Results_Ave_HIGH, ...
Results_STD_LOW, Results_STD_MID, Results_STD_HIGH)
%Calculate Weighted Mean
Results_Ave_WMean = ( Results_Ave_LOW*W(1) + Results_Ave_MID*W(2) + Results_Ave_HIGH*W(3) ) / sum(W);
Results_STD_WMean = ( Results_STD_LOW*W(1) + Results_STD_MID*W(2) + Results_STD_HIGH*W(3) ) / sum(W);
figure('Name', 'PL_NoMOC_NoLSO','Position',[0 300 1300 250]);
%Low-SR fibers
subplot(1,4,1);
hold on; box on;
errorbar(ILDvec,Results_Ave_LOW(:,1)', Results_STD_LOW(:,1)', 'b'); %NoPrec
errorbar(ILDvec,Results_Ave_LOW(:,2)', Results_STD_LOW(:,2)', 'r'); %Diotic
errorbar(ILDvec,Results_Ave_LOW(:,3)', Results_STD_LOW(:,3)', 'g'); %Ipsi
errorbar(ILDvec,Results_Ave_LOW(:,4)', Results_STD_LOW(:,4)', 'c'); %Contra
axis([min(ILDvec)-1.5 max(ILDvec)+1.5 axy(1,:)]);
title('LOW-SR fibers');
legend('NoP','Diotic','Ipsi','Contra', 'Location','northwest');
%Mid-SR fibers
subplot(1,4,2);
hold on; box on;
errorbar(ILDvec,Results_Ave_MID(:,1)', Results_STD_MID(:,1)', 'b'); %NoPrec
errorbar(ILDvec,Results_Ave_MID(:,2)', Results_STD_MID(:,2)', 'r'); %Diotic
errorbar(ILDvec,Results_Ave_MID(:,3)', Results_STD_MID(:,3)', 'g'); %Ipsi
errorbar(ILDvec,Results_Ave_MID(:,4)', Results_STD_MID(:,4)', 'c'); %Contra
axis([min(ILDvec)-1.5 max(ILDvec)+1.5 axy(2,:)]);
title('MID-SR fibers')
%High-SR fibers
subplot(1,4,3);
hold on; box on;
errorbar(ILDvec,Results_Ave_HIGH(:,1)', Results_STD_HIGH(:,1)', 'b'); %NoPrec
errorbar(ILDvec,Results_Ave_HIGH(:,2)', Results_STD_HIGH(:,2)', 'r'); %Diotic
errorbar(ILDvec,Results_Ave_HIGH(:,3)', Results_STD_HIGH(:,3)', 'g'); %Ipsi
errorbar(ILDvec,Results_Ave_HIGH(:,4)', Results_STD_HIGH(:,4)', 'c'); %Contra
axis([min(ILDvec)-1.5 max(ILDvec)+1.5 axy(3,:)]);
title('HIGH-SR fibers')
%Weighted Mean
subplot(1,4,4);
hold on; box on;
errorbar(ILDvec,Results_Ave_WMean(:,1)', Results_STD_WMean(:,1)', 'b'); %NoPrec
errorbar(ILDvec,Results_Ave_WMean(:,2)', Results_STD_WMean(:,2)', 'r'); %Diotic
errorbar(ILDvec,Results_Ave_WMean(:,3)', Results_STD_WMean(:,3)', 'g'); %Ipsi
errorbar(ILDvec,Results_Ave_WMean(:,4)', Results_STD_WMean(:,4)', 'c'); %Contra
axis([min(ILDvec)-1.5 max(ILDvec)+1.5 axy(4,:)]);
title('Weighted Mean')
han = axes(gcf, 'visible','off');
han.Title.Visible='on';
han.XLabel.Visible='on';
han.YLabel.Visible='on';
ylabel(han, 'ILD_{AN} (spikes/s)');
xlabel(han, 'Target ILD (dB)');
title(han, tit);