This documentation page applies to an outdated AMT version (1.5.0). Click here for the most recent page.
function data = exp_majdak2013(varargin)
%EXP_MAJDAK2013 Reproduce figures from Majdak et al. (2013)
% Usage: data = exp_majdak2013(flag)
%
% The following flags can be specified
%
% 'fig6' Participants localization performance before,
% during, and after the training. Quadrant errors.
% Polar errors. Lateral errors.
%
%
% Requirements:
% -------------
%
% In Matlab, Statistics and Machine Learning Toolbox and
% Curve Fitting Toolbox are required.
%
%
% See also: data_majdak2013
%
% References:
% P. Majdak, T. Walder, and B. Laback. Effect of long-term training on
% sound localization performance with spectrally warped and band-limited
% head-related transfer functions. J. Acoust. Soc. Am., 134:2148--2159,
% 2013.
%
%
% Url: http://amtoolbox.org/amt-1.5.0/doc/experiments/exp_majdak2013.php
% #Requirements: M-statistics M-curve
% #Author: David Poirier-Quinot (2022): first implementation
% #Author: Clara Hollomey (2023): integration in the AMT
% #Author: Piotr Majdak (2023): various fixes
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
% parse inputs
%definput.flags.type = {'fig6_quadrant', 'fig6_polar', 'fig6_lateral'};
definput.flags.datatype = {'missingflag', 'fig6'};
[flags,kv] = ltfatarghelper({},definput,varargin);
if flags.do_missingflag
flagnames=[sprintf('%s, ',definput.flags.type{2:end-2}),...
sprintf('%s or %s',definput.flags.type{end-1},definput.flags.type{end})];
error('%s: You must specify one of the following flags: %s.',upper(mfilename),flagnames);
end;
if flags.do_fig6
% define data to display based on parsed input
%tmp = strsplit(flags.type, '_'); errorTypeStr = tmp{2};
errorTypeStr = {'quadrant', 'polar', 'lateral'};
for ii = 1:numel(errorTypeStr)
switch errorTypeStr{ii}
case 'quadrant'
err='querrMiddlebrooks';
case 'polar'
err='rmsPmedianlocal';
case 'lateral'
err='precL';
end
% load data
data = data_majdak2013('fig6');
% init locals
errbar = 'std'; errbaridx = 2;
% errbar = 'ci'; errbaridx = 3;
N = 4200;
nonTrainingSessionNames = {'learn', 'post_learn', 'pre_test_dummy', 'post_test_dummy', 'pre_test_warped', 'post_test_warped'};
traininSessionNames = {'training_1', 'training_2', 'training_3', 'training_4', 'training_5', 'training_6', 'training_7', 'training_8', 'training_9', 'training_10', 'training_11', 'training_12', 'training_13', 'training_14', 'training_15', 'training_16', 'training_17', 'training_18', 'training_19', 'training_20', 'training_21'};
configs = struct('sessionNames', {{}}, 'stat', [], 'isControl', 0);
% loop over control conditions
for iControl = 0:1
% loop over pre/post training sessions
for iSession = 1:length(nonTrainingSessionNames)
configs(end+1) = struct('sessionNames', {{nonTrainingSessionNames{iSession}}}, 'stat', [], 'isControl', iControl);
end
% add training sessions (grouped)
configs(end+1) = struct('sessionNames', {traininSessionNames}, 'stat', [], 'isControl', iControl);
end
% remove first (dummy)
configs(1) = [];
%% compute stats
amt_disp('');
% loop over config (sessions)
for iConfig = 1:length(configs)
% init local
config = configs(iConfig);
meanallid = [];
% loop over subsession (for training)
for iSession = 1:length(config.sessionNames)
% log
amt_disp(sprintf('process stat \n session: %d/%d \n subsession: %d/%d', iConfig, length(configs), iSession, length(config.sessionNames)), 'volatile');
% init filter
selVect = data.is_control == config.isControl;
selVect = selVect & ismember(data.session_str, config.sessionNames{iSession});
% discard first 50 trials for learning session
if( ismember(config.sessionNames, 'learn') ); selVect = selVect & data.trial > 50; end
% stats
meanallid(iSession, :) = bootstrp(sum(selVect), @(m) localizationerror(m,err), data.pos(selVect, :));
end
% compute stats
configs(iConfig).stat = getStat(meanallid.');
end
%% model training performances
% control group
x=(200:200:N)';
yhat=[configs(14).stat(:,1); ];
yfit=fit(x, yhat-min(yhat),'exp1');
[yfitC, r, J, COVB]=nlinfit(x,yhat,@exponential,[yfit.a yfit.b min(yhat)]);
ci2=nlparci(real(yfitC),r,'covar',COVB);
% warped group
x=(200:200:N)';
yhatW=[configs(7).stat(:,1); ];
yfitW=fit(x, yhatW-min(yhatW),'exp1');
[yfitW, rW, J, COVBW]=nlinfit(x,yhatW,@exponential,[yfitW.a yfitW.b min(yhatW)]);
ciW=nlparci(real(yfitW),rW,'covar',COVBW);
%% plot data
% init
figure; hold on;
set(gcf,'Position',[10 226 616 484],'PaperType','A4');
prepos=-200;
postpos=N+400;
statPP = reshape([configs(8:13).stat], 4, 6).';
statPPW = reshape([configs(1:6).stat], 4, 6).';
stat = configs(14).stat;
statW = configs(7).stat;
% model: control
newx=(100:50:N+100)';
% model: warped
[ypred, delta]=nlpredci(@exponential,newx,real(yfitW),real(rW),'covar',real(COVBW));
hp=patch([newx; flipud(newx)], [ypred+delta; flipud(ypred-delta)],[1 1 1]*0.7);
set(hp, 'Edgecolor', [1 1 1]*0.7);
leg_model=plot(newx,ypred,'k','LineWidth',1);
[ypred, delta]=nlpredci(@exponential,newx,real(yfitC),real(r),'covar',real(COVB));
hp=patch([newx; flipud(newx)], [ypred+delta; flipud(ypred-delta)],[1 1 1]*0.8);
set(hp, 'Edgecolor', [1 1 1]*0.8);
plot(newx,ypred,'k','LineWidth',1);
% control: pre- & post
h=errorbar([prepos; N+100], [statPP(1,1); NaN], [statPP(2,errbaridx); NaN], 'g^'); errorbar_tick(h,80,'UNITS');
set(h,'LineWidth', 1, 'LineStyle','none','MarkerFaceColor','g'); leg_BBcontrol=h;
h=errorbar([postpos; N+100], [statPP(2,1); NaN], [statPP(2,errbaridx); NaN], 'g^'); errorbar_tick(h,80,'UNITS');
set(h,'LineWidth', 1, 'LineStyle','none','MarkerFaceColor','g');
h=errorbar([prepos; N+100], [statPP(3,1); NaN], [statPP(3,errbaridx); NaN], 'ro'); errorbar_tick(h,80,'UNITS');
set(h,'LineWidth', 1, 'LineStyle','none','MarkerFaceColor','r'); leg_BLcontrol=h;
h=errorbar([postpos; N+100], [statPP(4,1); NaN], [statPP(4,errbaridx); NaN], 'ro'); errorbar_tick(h,80,'UNITS');
set(h,'LineWidth', 1, 'LineStyle','none','MarkerFaceColor','r');
h=errorbar([prepos; N+100], [statPP(5,1); NaN], [statPP(5,errbaridx); NaN], 'bs'); errorbar_tick(h,80,'UNITS');
set(h,'LineWidth', 1, 'LineStyle','none','MarkerFaceColor','b'); leg_WPcontrol=h;
h=errorbar([postpos; N+100], [statPP(6,1); NaN], [statPP(6,errbaridx); NaN], 'bs'); errorbar_tick(h,80,'UNITS');
set(h,'LineWidth', 1, 'LineStyle','none','MarkerFaceColor','b');
% warped: pre- & post
h=errorbar([prepos+50; N+150], [statPPW(1,1); NaN], [statPPW(2,errbaridx); NaN], 'g^'); errorbar_tick(h,80,'UNITS');
set(h,'LineWidth', 1, 'LineStyle','none','MarkerFaceColor','w'); leg_BBtarget=h;
h=errorbar([postpos+50; N+150], [statPPW(2,1); NaN], [statPPW(2,errbaridx); NaN], 'g^'); errorbar_tick(h,80,'UNITS');
set(h,'LineWidth', 1, 'LineStyle','none','MarkerFaceColor','w');
h=errorbar([prepos+50; N+100], [statPPW(3,1); NaN], [statPPW(3,errbaridx); NaN], 'ro'); errorbar_tick(h,80,'UNITS');
set(h,'LineWidth', 1, 'LineStyle','none','MarkerFaceColor','w'); leg_BLtarget=h;
h=errorbar([postpos+50; N+100], [statPPW(4,1); NaN], [statPPW(4,errbaridx); NaN], 'ro'); errorbar_tick(h,80,'UNITS');
set(h,'LineWidth', 1, 'LineStyle','none','MarkerFaceColor','w');
h=errorbar([prepos+50; N+100], [statPPW(5,1); NaN], [statPPW(5,errbaridx); NaN], 'bs'); errorbar_tick(h,80,'UNITS');
set(h,'LineWidth', 1, 'LineStyle','none','MarkerFaceColor','w'); leg_WPtarget=h;
h=errorbar([postpos+100; N+100], [statPPW(6,1); NaN], [statPPW(6,errbaridx); NaN], 'bs'); errorbar_tick(h,80,'UNITS');
set(h,'LineWidth', 1, 'LineStyle','none','MarkerFaceColor','w');
% training: control group
h1=errorbar([(200:200:N)'; N+100],[stat(:,1); NaN],[stat(:,errbaridx); NaN],'ro'); %errorbar_tick(h1,80,'UNITS');
set(h1,'LineWidth', 1, 'LineStyle','none','MarkerFaceColor','r','LineStyle','-');
% training: warped group
h1=errorbar([(200:200:N)'; N+100],[statW(:,1); NaN],[statW(:,errbaridx); NaN],'bs'); % errorbar_tick(h1,80,'UNITS');
set(h1,'LineWidth', 1, 'LineStyle','none','MarkerFaceColor','w','LineStyle','-');
xlabel('Training day number','FontName','Arial');
[mxx,meta]=localizationerror(zeros(1, 9), err);
ylabel(meta.ylabel,'FontName','Arial');
box on;
set(gca,'XLim',[prepos-300 postpos+300],'FontName','Arial');
set(gca,'XTick',[200:2*200:N ]);
celli=1:N/200';
c=num2cell(celli(1:2:end))';
set(gca,'XTickLabel',c);
set(gca, 'TickLength', [0.02 0.05]);
set(gca,'LineWidth',1);
yaxval=get(gca,'YLim');
switch err
case 'querrMiddlebrooks'
set(gca,'YLim', [2 34.9]);
case 'rmsPmedianlocal'
set(gca,'YLim', [26 49]);
case 'precL'
set(gca,'YLim', [10.2 20.2]);
set(gca, 'YTick', 10:2:20);
h=legend([leg_BBcontrol leg_BLcontrol leg_WPcontrol leg_BBtarget leg_BLtarget leg_WPtarget leg_model], ...
'Control Broadband', 'Control Band-Limited', 'Control Warped', ...
'Target Broadband', 'Target Band-Limited', 'Target Warped');
set(h,'Fontsize',10,'LineWidth',1);
case 'rmsL'
set(gca,'YLim', [7.2 19.2]);
end
% save figure
%file = mfilename('fullpath');% current filename as results_path
amt_disp(real([yfitC(1) yfitW(1) -1/yfitC(2) -1/yfitW(2) yfitC(3) yfitW(3)]));
end
end
end
%% local functions
function [stat] = getStat(meanallid)
% init locals
cialpha = 0.05; % 95% confidence interval
% compute stats
[muprepost,sigprepost,muciprepost,sigciprepost] = normfit(meanallid, cialpha);
stat(:,1) = muprepost;
stat(:,2) = sigprepost;
stat(:,3) = diff(muciprepost)/2;
stat(:,4) = diff(sigciprepost)/2;
end
function y=exponential(a,x)
y=real(a(1).*exp(a(2)*x)+a(3));
end
function errorbar_tick(h,w,xtype)
%ERRORBAR_TICK Adjust the width of errorbars
% ERRORBAR_TICK(H) adjust the width of error bars with handle H.
% Error bars width is given as a ratio of X axis length (1/80).
% ERRORBAR_TICK(H,W) adjust the width of error bars with handle H.
% The input W is given as a ratio of X axis length (1/W). The result
% is independent of the x-axis units. A ratio between 20 and 80 is usually fine.
% ERRORBAR_TICK(H,W,'UNITS') adjust the width of error bars with handle H.
% The input W is given in the units of the current x-axis.
%
% See also ERRORBAR
%
% Author: Arnaud Laurent
% Creation : Jan 29th 2009
% MATLAB version: R2007a
%
% Notes: This function was created from a post on the french forum :
% http://www.developpez.net/forums/f148/environnements-developpement/matlab/
% Author : Jerome Briot (Dut)
% http://www.mathworks.com/matlabcentral/newsreader/author/94805
% http://www.developpez.net/forums/u125006/dut/
% It was further modified by Arnaud Laurent and Jerome Briot.
% Check numbers of arguments
error(nargchk(1,3,nargin))
% Check for the use of V6 flag ( even if it is depreciated ;) )
flagtype = get(h,'type');
% Check number of arguments and provide missing values
if nargin==1
w = 80;
end
if nargin<3
xtype = 'ratio';
end
% Calculate width of error bars
if ~strcmpi(xtype,'units')
dx = diff(get(gca,'XLim')); % Retrieve x limits from current axis
w = dx/w; % Errorbar width
end
% Plot error bars
if strcmpi(flagtype,'hggroup') % ERRORBAR(...)
hh=get(h,'children'); % Retrieve info from errorbar plot
x = get(hh(2),'xdata'); % Get xdata from errorbar plot
x(4:9:end) = x(1:9:end)-w/2; % Change xdata with respect to ratio
x(7:9:end) = x(1:9:end)-w/2;
x(5:9:end) = x(1:9:end)+w/2;
x(8:9:end) = x(1:9:end)+w/2;
set(hh(2),'xdata',x(:)) % Change error bars on the figure
else % ERRORBAR('V6',...)
x = get(h(1),'xdata'); % Get xdata from errorbar plot
x(4:9:end) = x(1:9:end)-w/2; % Change xdata with respect to the chosen ratio
x(7:9:end) = x(1:9:end)-w/2;
x(5:9:end) = x(1:9:end)+w/2;
x(8:9:end) = x(1:9:end)+w/2;
set(h(1),'xdata',x(:)) % Change error bars on the figure
end
end