This documentation page applies to an outdated AMT version (1.5.0). Click here for the most recent page.
function exp_mckenzie2022(varargin)
%EXP_mckenzie2022 experiments from McKenzie et al
%
% Usage:
% exp_mckenzie2022('fig11d'); % (to plot Figure 11 d).
% exp_mckenzie2022('fig11a'); % (to plot Figure 11 a).
%
% Reproduces the Figures 11a-d from the listening performed in
% McKenzie et al. (2022). The signals are from McKenzie et al. (2018).
%
% Note: PEAQ and CLL are commented out in this script so that it runs without any
% additional files necessary. To produce the respective data, download the
% PEAQ and CLL code:
% https://github.com/NikolajAndersson/PEAQ and
% https://www.acoustics.hut.fi/-301ville/software/auditorymodel/.
% The test sounds (ts.... etc) must be saved as wav files to work with the
% PEAQ model.
%
% Examples:
% ---------
%
% To display Figure 11a use :
%
% exp_mckenzie2022('fig11a');
%
% To display Figure 11d use :
%
% exp_mckenzie2022('fig11d');
%
% See also: mckenzie2022 demo_mckenzie2022 plot_mckenzie2022
%
% References:
% T. McKenzie, D. T. Murphy, and G. Kearney. Diffuse-field equalisation
% of binaural ambisonic rendering. Applied Sciences, 8(10), 2018.
% [1]http ]
%
% T. McKenzie, C. Armstrong, L. Ward, D. Murphy, and G. Kearney.
% Predicting the colouration between binaural signals. Appl. Sci.,
% 12(2441), 2022.
%
% References
%
% 1. https://www.mdpi.com/2076-3417/8/10/1956
%
%
% Url: http://amtoolbox.org/amt-1.5.0/doc/experiments/exp_mckenzie2022.php
% #Author: Thomas McKenzie (2022): initial implementation
% #Author: Cal Armstrong (2022): initial implementation
% #Author: Lauren Ward (2022): initial implementation
% #Author: Damian Murphy (2022): initial implementation
% #Author: Gavin Kearney (2022): initial implementation
% #Author: Piotr Majdak (2023): documentation and structure adaptations
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
definput.flags.type={'missingflag','fig11a', 'fig11b', 'fig11c', 'fig11d'};
[flags,keyvals] = ltfatarghelper({},definput,varargin);
if flags.do_missingflag
flagnames=[sprintf('%s, ',definput.flags.type{2:end-2}),...
sprintf('%s or %s',definput.flags.type{end-1},definput.flags.type{end})];
error('%s: You must specify one of the following flags: %s.',upper(mfilename),flagnames);
end
%% Read in listening test stimuli
data = amt_load('mckenzie2022', 'sig_mckenzie2018.mat');
fs = data.fs;
rs1 = data.rs1;
testDirections = data.testDirections;
ts1 = data.ts1;
ts2 = data.ts2;
ts3 = data.ts3;
ts4 = data.ts4;
ts5 = data.ts5;
ts6 = data.ts6;
ts7 = data.ts7;
% combine stimuli into one matrix
ts = cat(3,ts1,ts2,ts3,ts4,ts5,ts6,ts7);
rs = cat(3,rs1,rs1,rs1,rs1,rs1,rs1,rs1);
tsP = permute(ts,[1 3 2]);
rsP = permute(rs,[1 3 2]);
%% Read in listening test results
data = amt_load('mckenzie2022', 'data_mckenzie2022.mat');
% data = load('data_mckenzie2022.mat');
resultsRaw = data.resultsRaw;
% arrange results from repeated stimuli
resultsMean = round(squeeze(mean(resultsRaw))');
% without anchors
listTestResults = [resultsMean(:,1,:);resultsMean(:,2,:);resultsMean(:,3,:);resultsMean(:,4,:);resultsMean(:,5,:);resultsMean(:,6,:);resultsMean(:,7,:)];
%% Run spectral difference calculations
% parameters
freqRange = [20 20000]; nfft = length(rs(:,1,1));
%switch figureNumber
if flags.do_fig11a
% BASIC SPECTRAL DIFFERENCE
tsF = fftMatrix(tsP, fs, nfft, freqRange);
rsF = fftMatrix(rsP, fs, nfft, freqRange);
% get single values of spectral difference for all stimuli
BSpecDiff = squeeze(mean(abs(tsF-rsF)));
BavgSpecDiffS = mean(BSpecDiff,2);
elseif flags.do_fig11b
amt_disp('perceptual evaluation of audio quality not implemented.');
% % PERCEPTUAL EVALUATION OF AUDIO QUALITY
% for i = 1:length(testDirectory)
% [odg_tsA1(i), movb_tsA1(:,i)] = PQevalAudio_fn(strcat(testDirectory,'HRIR__',num2str(testDirections(i,1)),'az_',num2str(testDirections(i,2)),'el_',num2str(i),'.wav'), strcat(testDirectory,'Ambi_1__',num2str(testDirections(i,1)),'az_',num2str(testDirections(i,2)),'el_',num2str(i),'.wav'));
% [odg_tsA3(i), movb_tsA3(:,i)] = PQevalAudio_fn(strcat(testDirectory,'HRIR__',num2str(testDirections(i,1)),'az_',num2str(testDirections(i,2)),'el_',num2str(i),'.wav'), strcat(testDirectory,'Ambi_3__',num2str(testDirections(i,1)),'az_',num2str(testDirections(i,2)),'el_',num2str(i),'.wav'));
% [odg_tsA5(i), movb_tsA5(:,i)] = PQevalAudio_fn(strcat(testDirectory,'HRIR__',num2str(testDirections(i,1)),'az_',num2str(testDirections(i,2)),'el_',num2str(i),'.wav'), strcat(testDirectory,'Ambi_5__',num2str(testDirections(i,1)),'az_',num2str(testDirections(i,2)),'el_',num2str(i),'.wav'));
% [odg_tsD1(i), movb_tsD1(:,i)] = PQevalAudio_fn(strcat(testDirectory,'HRIR__',num2str(testDirections(i,1)),'az_',num2str(testDirections(i,2)),'el_',num2str(i),'.wav'), strcat(testDirectory,'DFC_1__',num2str(testDirections(i,1)),'az_',num2str(testDirections(i,2)),'el_',num2str(i),'.wav'));
% [odg_tsD3(i), movb_tsD3(:,i)] = PQevalAudio_fn(strcat(testDirectory,'HRIR__',num2str(testDirections(i,1)),'az_',num2str(testDirections(i,2)),'el_',num2str(i),'.wav'), strcat(testDirectory,'DFC_3__',num2str(testDirections(i,1)),'az_',num2str(testDirections(i,2)),'el_',num2str(i),'.wav'));
% [odg_tsD5(i), movb_tsD5(:,i)] = PQevalAudio_fn(strcat(testDirectory,'HRIR__',num2str(testDirections(i,1)),'az_',num2str(testDirections(i,2)),'el_',num2str(i),'.wav'), strcat(testDirectory,'DFC_5__',num2str(testDirections(i,1)),'az_',num2str(testDirections(i,2)),'el_',num2str(i),'.wav'));
% end
%
% % get single values of spectral difference for all stimuli
% QavgSpecDiffS = [odg_tsA1 odg_tsA3 odg_tsA5 odg_tsD1 odg_tsD3 odg_tsD5]';
%
elseif flags.do_fig11c
amt_disp('composite loudness level not implemented.');
% % COMPOSITE LOUDNESS LEVEL
% for i = 1:length(tsP(1,:,1))
% CLL_difference(i,:) = CLL(tsP(:,i,:),rsP(:,i,:),fs);
% end
% % get single values of spectral difference for all stimuli
% CavgSpecDiffS = mean(abs(CLL_difference),2);
%
elseif flags.do_fig11d
% PREDICTED BINAURAL COLOURATION
f.fs = fs;f.nfft = nfft;f.minFreq = freqRange(1); f.maxFreq = freqRange(2);
[~,PSpecDiff] = mckenzie2022(tsP,rsP,0,f,0); %no fft pre model
PSpecDiff = squeeze(PSpecDiff);
% get single values of spectral difference for all stimuli
PavgSpecDiffS = mean(PSpecDiff,2);
end
%% Calculate Pearson's Correlation Coefficient
% between spectral difference values and perceptual listening test results
%switch figureNumber
if flags.do_fig11a
[rbsd, pbsd] = corrcoef(BavgSpecDiffS,listTestResults);
disp(strcat('BSD correlation=',num2str(rbsd(2,1)),', p=',num2str(pbsd(2,1))));
% elseif flags.do_fig11b
% [rqsd, pqsd] = corrcoef(QavgSpecDiffS,listTestResults);
% disp(strcat('PEAQ correlation = ',num2str(rqsd(2,1)),', p = ',num2str(pqsd(2,1))));
%
% elseif flags.do_fig11c
% [rcsd, pcsd] = corrcoef(CavgSpecDiffS,listTestResults);
% disp(strcat('CLL correlation = ',num2str(rcsd(2,1)),', p = ',num2str(pcsd(2,1))));
elseif flags.do_fig11d
[rpsd, ppsd] = corrcoef(PavgSpecDiffS,listTestResults);
disp(strcat('PBC correlation=',num2str(rpsd(2,1)),', p=',num2str(ppsd(2,1))));
end
%% Plot PCC vs Listening Test Results
plotColour = get(gca,'colororder');
plotColour(8,:) = [0.9,0.1,0.9];
xFit = linspace(min(listTestResults), max(listTestResults), 1000);
%switch figureNumber
if flags.do_fig11a
j = 1; hold on;
for i = 1:length(listTestResults)
scatter(listTestResults(i),BavgSpecDiffS(i),60,'x','LineWidth',1.5,'MarkerEdgeColor',plotColour(j,:));
j = j+1;
if j == 9, j = 1; end
end
coefficients = polyfit(listTestResults, BavgSpecDiffS, 1);
yFit = polyval(coefficients, xFit);
plot(xFit, yFit, 'k-', 'LineWidth', 1);
ylabel('BSD (dB)'); xlabel('MUSHRA Test Results');
set(gca,'FontSize', 14); set(gcf, 'Color', 'w');
pbaspect([1.7 1 1]); grid on; box on;
elseif flags.do_fig11d
j = 1; hold on;
for i = 1:length(listTestResults)
scatter(listTestResults(i),PavgSpecDiffS(i),60,'x','LineWidth',1.5,'MarkerEdgeColor',plotColour(j,:));
j = j+1;
if j == 9, j = 1; end
end
coefficients = polyfit(listTestResults, PavgSpecDiffS, 1);
yFit = polyval(coefficients, xFit);
plot(xFit, yFit, 'k-', 'LineWidth', 1);
ylabel('PBC (sones)'); xlabel('MUSHRA Test Results');
set(gca,'FontSize', 14); set(gcf, 'Color', 'w');
pbaspect([1.7 1 1]); grid on; box on;
end
%% Extra functions
function [matrix_output_fft, freq_vector_fft,fft_abs_matrix_input] = fftMatrix(matrix_input, Fs, Nfft, freq_range)
% Function to calculate the single sided frequency spectrum of two matrices
% of HRIRs for a specified frequency range. Returns FFT of input matrix as
% the absolute FFT in dB for the specified frequency range with the
% associated frequency vector.
% Take FFT of matrices
fft_matrix_input = fft(matrix_input, Nfft); % Get Fast Fourier transform
% Compute freq bins for x-axis limits
fr_low = round(freq_range(1)*Nfft/Fs);
fr_high = round(freq_range(2)*Nfft/Fs);
% Get absolute values for frequency bins
fft_abs_matrix_input = abs(fft_matrix_input(fr_low:fr_high,:,:));
% Get values in dB
matrix_output_fft = 20*log10(fft_abs_matrix_input);
% Frequency vector for plotting
f = 0:Fs/Nfft:Fs-(Fs/Nfft);
freq_vector_fft = f(fr_low:fr_high);
end
% Composite loudness level difference
function [CLL_difference,freqs] = CLL(input,ref,Fs)
if length(input(:,1)) < length(input(1,:))
input = input';
end
if length(ref(:,1)) < length(ref(1,:))
ref = ref';
end
% requires Karjalainen Auditory Toolbox.
[~, ~, ~, CLL_input, freqs] = simuspatcues_KarAudMod(input(:,1),input(:,2),Fs);
[~, ~, ~, CLL_ref] = simuspatcues_KarAudMod(ref(:,1),ref(:,2),Fs);
CLL_difference = CLL_input-CLL_ref;
end
end