THE AUDITORY MODELING TOOLBOX

Applies to version: 1.5.0

View the help

Go to function

EXP_WIERSTORF2013 - Figures from Wierstorf (2013)

Program code:

function output = exp_wierstorf2013(varargin)
%EXP_WIERSTORF2013 Figures from Wierstorf (2013)
%   Usage: output = exp_wierstorf2013(flag)
%
%   EXP_WIERSTORF2013(flag) reproduces the results for the figure given
%   by flag from the Wierstorf (2013) paper. It will also plot the
%   results.  The format of its output depends on the chosen figure.
%
%   EXP_WIERSTORF2013 requires the Sound-Field-Synthesis Toolbox version 2.4.0 or higher.
%
%
%   The following flags can be specified;
%
%     'plot'     plot the output of the experiment. This is the default.
%
%     'no_plot'   Don't plot, only return data.
%
%     'auto'     Re-calculate the file if it does not exist. Return 1 if the
%                file exist, otherwise 0. This is the default
%
%     'redo'     Always recalculate the file.
%
%     'cached'   Always use the cached version. Throws an error if the
%                file does not exist.
%
%     'fig1'     Reproduce Fig.1 from Wierstorf (2013). The localization error
%                for a typical stereophony setup is calculated and shown for the
%                whole listening are, sampled with 21x21 point.
%
%     'fig3'     Simulations of the sound field for Wave Field Synthesis for
%                a mono-frequent virtual plane wave with three different
%                frequencies of 1kHz, 2kHz, 5kHz. In addition a spatio-temporal
%                impulse response of the sound field for a broadband plane wave
%                is shown at the time 4.8ms after its start.
%
%     'fig6'     Results from an experiment comparing the localization accuracy
%                for a real point source (loudspeaker) and a simulated point
%                source (binaural synthesis).
%
%     'fig7'     Results from a localization experiment for a virtual point
%                source in Wave Field Synthesis for different positions in the
%                listening area (data are the same as in Fig.10). The line is
%                always starting from a listener position and points towards the
%                direction the listener perceived the auditory event.
%
%     'fig8'     Mapping of ITD values in the first twelve frequency channels to
%                the corresponding azimuth angles in the range -90deg to 90deg.
%                The ITD values are calculated from an HRTF data base with the
%                binaural model after Dietz.
%
%     'fig9'     Deviation of the predicted sound source location with the
%                mapping function from Fig.8 for the same HRTF data set as in
%                Fig.8.
%
%     'fig10'    Results from a localization experiment for a virtual point
%                source in Wave Field Synthesis for different positions in the
%                listening area (data points are the same as in Fig.6). The
%                signals were simulated by binaural synthesis and given also to
%                the Dietz binaural model to predict the localization. The model
%                results are shown as lines. Three different loudspeaker array
%                setups were used.
%
%     'fig11a'   Prediction of the localization for a virtual point source in
%                Wave Field Synthesis in the whole listening area for a linear
%                loudspeaker array.
%
%     'fig11b'   Prediction of the localization for a virtual plane wave in Wave
%                Field Synthesis in the whole listening area for a linear
%                loudspeaker array.
%
%     'fig12a'   Prediction of the localization for a virtual point source in
%                Wave Field Synthesis in the whole listening area for a circular
%                loudspeaker array.
%
%     'fig12b'   Prediction of the localization for a virtual plane wave in Wave
%                Field Synthesis in the whole listening area for a circular
%                loudspeaker array.
%
%   If no flag is given, the function will print the list of valid flags.
%
%   Examples:
%   ---------
%
%   To display Figure 1 use :
%
%     exp_wierstorf2013('fig1');
%
%   To display Figure 3 use :
%
%     exp_wierstorf2013('fig3');
%
%   To display Figure 6 use :
%
%     exp_wierstorf2013('fig6');
%
%   To display Figure 7 use :
%
%     exp_wierstorf2013('fig7');
%
%   To display Figure 8 use :
%
%     exp_wierstorf2013('fig8');
%
%   To display Figure 9 use :
%
%     exp_wierstorf2013('fig9');
%
%   To display Figure 10 use :
%
%     exp_wierstorf2013('fig10');
%
%   To display Figure 11a use :
%
%     exp_wierstorf2013('fig11a');
%
%   To display Figure 11b use :
%
%     exp_wierstorf2013('fig11b');
%
%   To display Figure 12a use :
%
%     exp_wierstorf2013('fig12a');
%
%   To display Figure 12b use :
%
%     exp_wierstorf2013('fig12b');
%
%   The figures in the Wierstorf et al. (2013) were plotted with gnuplot and SFS revision
%   a8914700a4. The appearance of figures presented here may be different.
%
%   References:
%     H. Wierstorf, A. Raake, and S. Spors. Binaural assessment of
%     multi-channel reproduction. In J. Blauert, editor, The technology of
%     binaural listening, chapter 10. Springer, Berlin--Heidelberg--New York
%     NY, 2013.
%     
%
%   Url: http://amtoolbox.org/amt-1.5.0/doc/experiments/exp_wierstorf2013.php


%   #Author: Hagen Wierstorf (2013)
%   #Author: Clara Hollomey (2020)

% This file is licensed unter the GNU General Public License (GPL) either 
% version 3 of the license, or any later version as published by the Free Software 
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and 
% at <https://www.gnu.org/licenses/gpl-3.0.html>. 
% You can redistribute this file and/or modify it under the terms of the GPLv3. 
% This file is distributed without any warranty; without even the implied warranty 
% of merchantability or fitness for a particular purpose. 

definput.import={'amt_cache'};
definput.flags.type={'missingflag','fig1','fig3','fig6','fig7','fig8', ...
                    'fig9','fig10','fig11a','fig11b','fig12a','fig12b'};

definput.flags.plot={'plot','no_plot'};

[flags,keyvals]  = ltfatarghelper({},definput,varargin);

if flags.do_missingflag
  flagnames=[sprintf('%s, ',definput.flags.type{2:end-2}),...
             sprintf('%s or %s',definput.flags.type{end-1},definput.flags.type{end})];
  error('%s: You must specify one of the following flags: %s.',upper(mfilename),flagnames);
end;

% Get SFS version
sfsver = strsplit(SFS_version,'.');
% Checking for the Sound-Field-Synthesis Toolbox
if ~exist('SFS_start') | sfsver{1}<2 | (sfsver{1}==2 && sfsver{2}<4)
    error(['%s: you need to install the Sound-Field-Synthesis Toolbox.\n', ...
        'You can download it at https://github.com/sfstoolbox/sfs.\n', ...
        'You need version 2.4.0 or higher of the Toolbox.'], ...
        upper(mfilename));
else
    SFS_start;
end


%% ------ F I G U R E  1 -------------------------------------------------
if flags.do_fig1

    % listening area
    X = [-2 2];
    Y = [-3.15 -0.15];
    % Orientation of the listener (always to the front)
    phi = pi/2;
    % Position of the virtual point source
    xs = [0 0];
    src = 'ps';
    % Intra-loudspeaker distance on the stereo setup
    L = 2;

    output = amt_cache('get','fig1',flags.cachemode);
    if isempty(output),
        [loc_error,aud_event,~,xaxis,yaxis,x0] = ...
            wierstorf2013(X,Y,phi,xs,src,L,'stereo');
                output.loc_error = loc_error;
                output.aud_event = aud_event;
                output.xaxis = xaxis;
                output.yaxis = yaxis;
                output.x0 = x0;
                amt_cache('set','fig1',output);
    end;

    if flags.do_plot
        % ------ Plotting ------
        figure;
        [u,v,~] = pol2cart(rad(output.aud_event+90),ones(size(output.aud_event)), ...
            zeros(size(output.aud_event)));
        quiver(output.xaxis,output.yaxis,u',v',0.5);
        axis([-2.13 2.13 -3.3 0.2])
        conf.plot.realloudspeakers = true;
        conf.plot.lssize = 0.16;
        draw_loudspeakers(output.x0,[1 1 0],conf);
        xlabel('x/m');
        ylabel('y/m');
    end;

%% ------ F I G U R E  3  ------------------------------------------------
elseif flags.do_fig3

    conf = SFS_config;
    % listening area
    X = [-2 2];
    Y = [-2 2];
    Z = 0;
    % circular array with 56 loudspeakers
    conf.secondary_sources.geometry = 'circle';
    conf.secondary_sources.size = 3;
    conf.secondary_sources.number = 56;
    conf.secondary_sources.center = [0 0 0];
    conf.secondary_sources.x0 = [];
    conf.xref = [0 0 0];
    % plane wave travelling upwards
    xs = [0 1 0];
    src = 'pw';
    % disable WFS pre-equalization filter for cleaner plot
    conf.wfs.usehpre = false;


    output = amt_cache('get','fig3',flags.cachemode);
    if isempty(output)
        % get secondary sources and tapering window for plotting
        x0 = secondary_source_positions(conf);
        % disable inactive loudspeakers for plot
        x0(:,7) = [zeros(1,29) ones(1,27)];
        % (a)
        f = 1000;
        [P_a,xaxis,yaxis,zaxis] = sound_field_mono_wfs(X,Y,Z,xs,src,f,conf);
        % (b)
        f = 2000;
        P_b = sound_field_mono_wfs(X,Y,Z,xs,src,f,conf);
        % (c)
        f = 5000;
        P_c = sound_field_mono_wfs(X,Y,Z,xs,src,f,conf);
        % (d)
        t = 1.5 / conf.c;
        P_d = sound_field_imp_wfs(X,Y,Z,xs,src,t,conf);

                output.P_a = P_a;
                output.P_b = P_b;
                output.P_c = P_c;
                output.P_d = P_d;
                output.xaxis = xaxis;
                output.yaxis = yaxis;
                output.zaxis = zaxis;
                output.x0 = x0;

        amt_cache('set','fig3',output);
    end;

    if flags.do_plot
        % ------ Plotting ------
        % (a)
        plot_sound_field(-output.P_a,X,Y,Z,output.x0,conf);
        axis([X(1) X(2) Y(1) Y(2)]);
        colorbar;
        xlabel('x/m');
        ylabel('y/m');
        title('(a) f_{pw} = 1kHz');
        % (b)
        plot_sound_field(-output.P_b,X,Y,Z,output.x0,conf);
        axis([X(1) X(2) Y(1) Y(2)]);
        colorbar;
        xlabel('x/m');
        ylabel('y/m');
        title('(b) f_{pw} = 2kHz');
        % (c)
        plot_sound_field(-output.P_c,X,Y,Z,output.x0,conf);
        axis([X(1) X(2) Y(1) Y(2)]);
        colorbar;
        xlabel('x/m');
        ylabel('y/m');
        title('(c) f_{pw} = 5kHz');
        % (d)
        conf.plot.usedb = 1;
        plot_sound_field(output.P_d,X,Y,Z,output.x0,conf);
        axis([X(1) X(2) Y(1) Y(2)]);
        colorbar;
        xlabel('x/m');
        ylabel('y/m');
        title('(d) t_{pw} = 4.8ms');
    end


%% ------ F I G U R E  6 -------------------------------------------------
elseif flags.do_fig6

    if flags.do_plot
        [data,description] = data_wierstorf2013('fig6','plot');
    else
        [data,description] = data_wierstorf2013('fig6','no_plot');
    end
    output.data = data;
    output.description = description;


%% ------ F I G U R E  7 -------------------------------------------------
elseif flags.do_fig7

    [data,description] = data_wierstorf2013('fig7','no_plot');
    output.data = data;
    output.description = description;
    if flags.do_plot
        conf.secondary_sources.geometry = 'linear';
        conf.secondary_sources.size = 2.85;
        conf.secondary_sources.center = [0 0 0];
        conf.secondary_sources.x0 = [];
        conf.plot.realloudspeakers = true;
        conf.plot.lssize = 0.16;
        conf.secondary_sources.logspread = 1;
        figure;
        subplot(1,3,1);
        conf.secondary_sources.number = 3;
        quiver(data(:,1),data(:,2),data(:,3),data(:,4),25,'.b');
        hold on;
        draw_loudspeakers(secondary_source_positions(conf),conf);
        hold on;
        plot(0,1,'*r');
        hold off;
        title(description{3,1});
        axis([-2.13 1.63 -2.2 1.2]);
        xlabel('x/m');
        ylabel('y/m');
        subplot(1,3,2);
        conf.secondary_sources.number = 8;
        quiver(data(:,1),data(:,2),data(:,5),data(:,6),25,'.b');
        hold on;
        draw_loudspeakers(secondary_source_positions(conf),conf);
        hold on;
        plot(0,1,'*r');
        hold off;
        title(description{5,1});
        axis([-2.13 1.63 -2.2 1.2]);
        xlabel('x/m');
        ylabel('y/m');
        subplot(1,3,3);
        conf.secondary_sources.number = 15;
        quiver(data(:,1),data(:,2),data(:,7),data(:,8),25,'.b');
        hold on;
        draw_loudspeakers(secondary_source_positions(conf),conf);
        hold on;
        plot(0,1,'*r');
        hold off;
        title(description{7,1});
        axis([-2.13 1.63 -2.2 1.2]);
        xlabel('x/m');
        ylabel('y/m');
    end


%% ------ F I G U R E  8 -------------------------------------------------
elseif flags.do_fig8

    [phi,itd] = amt_cache('get','fig8', flags.cachemode);
    if isempty(phi)
        % Sound Field Synthesis Toolbox settings
        conf = SFS_config;
        conf.N = 4096;
        % load HRTFs, see: http://doi.org/10.5281/zenodo.55418
        hrtf = amt_load('wierstorf2013','QU_KEMAR_anechoic_3m.sofa');
        x0 = SOFAcalculateAPV(hrtf);
        % generate noise signal
        sig_noise = noise(44100/5,1,'white');
        phi = -90:90;
        for ii=1:length(phi)
            % generate noise coming from the given direction
            ir = get_ir(hrtf,[0 0 0],[0 0],[rad(phi(ii)) 0 x0(ii,3)], ...
                        'spherical',conf);
            sig = auralize_ir(ir,sig_noise,1,conf);
            % calculate binaural parameters
            [fine,cfreqs,ild_tmp] = dietz2011(sig,44100,'fhigh',1400);
            % unwrap ITD
            itd_tmp = dietz2011_unwrapitd(fine.itd,ild_tmp,fine.f_inst,2.5);
            % calculate the mean about time of the binaural parameters and store
            % them
            itd(ii,:) = median(itd_tmp,1);
        end
        amt_cache('set', 'fig8', phi,itd);
    end;

    output.phi = phi;
    output.itd = itd;

    if flags.do_plot
        % ------ Plotting ------
        figure;
        plot(phi,itd.*1000);
        axis([-90 0 0 0.9])
        xlabel('phi_{sound event}/deg');
        ylabel('interaural time difference/ms');
    end;

end;


%% ------ F I G U R E  9 -------------------------------------------------
if flags.do_fig9

    [phi_auditory_event,phi_sound_event] = amt_cache('get', 'fig9', flags.cachemode);
    if isempty(phi_auditory_event)
        % Sound Field Synthesis Toolbox settings
        conf = SFS_config;
        conf.N = 4096;
        % load lookup table
        lookup = data_wierstorf2013('itd2angle_lookuptable');
        % load HRTFs, see:
        hrtf = amt_load('wierstorf2013','qu_kemar_anechoic_3m.sofa');
        x0 = SOFAcalculateAPV(hrtf);
        % generate noise signal
        sig_noise = noise(44100/5,1,'white');
        % azimuth angles
        phi = -90:90;
        for ii=1:length(phi)
            % generate noise coming from the given direction
            ir = get_ir(hrtf,[0 0 0],[0 0],[rad(phi(ii)) 0 x0(ii,3)], ...
                        'spherical',conf);
            sig = auralize_ir(ir,sig_noise,1,conf);
            phi_auditory_event(ii) = wierstorf2013_estimateazimuth(sig,lookup,'dietz2011');
            phi_sound_event(ii) = phi(ii);
        end
        amt_cache('set', 'fig9', phi_auditory_event,phi_sound_event);
    end;

    output.phi_auditory_event = phi_auditory_event;
    output.phi_sound_event = phi_sound_event;

    if flags.do_plot
        % ------ Plotting ------
        figure;
        plot(phi_sound_event,phi_auditory_event-phi_sound_event);
        axis([-90 90 -3 3])
        xlabel('phi_{sound event}/deg');
        ylabel('phi_{auditory event}-phi_{sound event}/deg');
    end;
end


%% ------ F I G U R E  10 ------------------------------------------------
if flags.do_fig10

    % orientation of the listener (always to the front)
    phi = pi/2;
    % position of the virtual point source
    xs = [0 1];
    src = 'ps';
    % array size
    L = 2.85;

    X = -1.75:0.25:0;
    Y1 = -1.5;
    Y2 = -2.0;

    output = amt_cache('get', 'fig10', flags.cachemode);
    if isempty(output)
        hrtf = amt_load('wierstorf2013', 'qu_kemar_anechoic_3m.sofa');
        for ii=1:length(X)
            amt_disp([num2str(ii) ' of ' num2str(length(X))]);
            for jj=1:5
                model_3_Y1(ii,jj) = wierstorf2013(X(ii),Y1,phi,xs,src,L,'wfs', ...
                                                  'resolution',1, ...
                                                  'nls',3, ...
                                                  'array','linear', ...
                                                  'hrtf',hrtf, ...
                                                  'showprogress',0);
                model_3_Y2(ii,jj) = wierstorf2013(X(ii),Y2,phi,xs,src,L,'wfs', ...
                                                  'resolution',1, ...
                                                  'nls',3, ...
                                                  'array','linear', ...
                                                  'hrtf',hrtf, ...
                                                  'showprogress',0);
                model_8_Y1(ii,jj) = wierstorf2013(X(ii),Y1,phi,xs,src,L,'wfs', ...
                                                  'resolution',1, ...
                                                  'nls',8, ...
                                                  'array','linear', ...
                                                  'hrtf',hrtf, ...
                                                  'showprogress',0);
                model_8_Y2(ii,jj) = wierstorf2013(X(ii),Y2,phi,xs,src,L,'wfs', ...
                                                  'resolution',1, ...
                                                  'nls',8, ...
                                                  'array','linear', ...
                                                  'hrtf',hrtf, ...
                                                  'showprogress',0);
                model_15_Y1(ii,jj) = wierstorf2013(X(ii),Y1,phi,xs,src,L,'wfs', ...
                                                   'resolution',1, ...
                                                   'nls',15, ...
                                                   'array','linear', ...
                                                   'hrtf',hrtf, ...
                                                   'showprogress',0);
                model_15_Y2(ii,jj) = wierstorf2013(X(ii),Y2,phi,xs,src,L,'wfs', ...
                                                   'resolution',1, ...
                                                   'nls',15, ...
                                                   'array','linear', ...
                                                   'hrtf',hrtf, ...
                                                   'showprogress',0);
            end
        end
                output.model_3_Y1 = model_3_Y1;
                output.model_3_Y2 = model_3_Y2;
                output.model_8_Y1 = model_8_Y1;
                output.model_8_Y2 = model_8_Y2;
                output.model_15_Y1 = model_15_Y1;
                output.model_15_Y2 = model_15_Y2;
        amt_cache('set', 'fig10', output);
    end

    % get the human data
    [data,description] = data_wierstorf2013('fig10','no_plot');
    output.data = data;
    output.description = description;

    if flags.do_plot

        figure;
        subplot(3,1,1)
        errorbar(data(:,1)-0.025,data(:,2),data(:,3),'ob'); hold on;
        errorbar(data(:,1)+0.025,data(:,8),data(:,9),'or');
        plot(data(:,1),mean(output.model_3_Y1,2),'-b');
        plot(data(:,1),mean(output.model_3_Y2,2),'-r');
        axis([-1.85 0.125 -16 7]);
        legend(description{2,1},description{8,1});
        title(description{2,2});
        xlabel(description{1,3});
        ylabel(description{2,3});
        subplot(3,1,2)
        errorbar(data(:,1)-0.025,data(:,4),data(:,5),'ob'); hold on;
        errorbar(data(:,1)+0.025,data(:,10),data(:,11),'or');
        plot(data(:,1),mean(output.model_8_Y1,2),'-b');
        plot(data(:,1),mean(output.model_8_Y2,2),'-r');
        axis([-1.85 0.125 -16 7]);
        legend(description{4,1},description{10,1});
        title(description{4,2});
        xlabel(description{1,3});
        ylabel(description{2,3});
        subplot(3,1,3)
        errorbar(data(:,1)-0.025,data(:,6),data(:,7),'ob'); hold on;
        errorbar(data(:,1)+0.025,data(:,12),data(:,13),'or');
        plot(data(:,1),mean(output.model_15_Y1,2),'-b');
        plot(data(:,1),mean(output.model_15_Y2,2),'-r');
        axis([-1.85 0.125 -16 7]);
        legend(description{6,1},description{12,1});
        title(description{6,2});
        xlabel(description{1,3});
        ylabel(description{2,3});

    end
end


%% ------ F I G U R E  11a -----------------------------------------------
if flags.do_fig11a

    % listening area
    X = [-2 2];
    Y = [-3.15 -0.15];
    % orientation of the listener (always to the front)
    phi = pi/2;
    % position of the virtual point source
    xs = [0 1];
    src = 'ps';
    % array size
    L = 2.85;

    output = amt_cache('get', 'fig11a', flags.cachemode);
    if isempty(output)
        amt_disp('Warning: this will take a long time!');
        hrtf = amt_load('wierstorf2013', 'qu_kemar_anechoic_3m.sofa');
        % 3 loudspeakers
        amt_disp('Calculating figure 1/6');
        [~,aud_event_3,~,xaxis_31,yaxis_31,x0_3] = ...
            wierstorf2013(X,Y,phi,xs,src,L,'wfs', ...
                          'resolution',31, ...
                          'nls',3, ...
                          'hrtf',hrtf, ...
                          'array','linear');
        amt_disp('Calculating figure 2/6');
        [loc_error_3,~,~,xaxis_135,yaxis_135] = ...
            wierstorf2013(X,Y,phi,xs,src,L,'wfs', ...
                          'resolution',135, ...
                          'nls',3, ...
                          'hrtf',hrtf, ...
                          'array','linear');
        % 8 loudspeakers
        amt_disp('Calculating figure 3/6');
        [~,aud_event_8,~,~,~,x0_8] = ...
            wierstorf2013(X,Y,phi,xs,src,L,'wfs', ...
                          'resolution',31, ...
                          'nls',8, ...
                          'hrtf',hrtf, ...
                          'array','linear');
        amt_disp('Calculating figure 4/6');
        loc_error_8 = ...
            wierstorf2013(X,Y,phi,xs,src,L,'wfs', ...
                          'resolution',135, ...
                          'nls',8, ...
                          'hrtf',hrtf, ...
                          'array','linear');
        % 15 loudspeakers
        amt_disp('Calculating figure 5/6');
        [~,aud_event_15,~,~,~,x0_15] = ...
            wierstorf2013(X,Y,phi,xs,src,L,'wfs', ...
                          'resolution',31, ...
                          'nls',15, ...
                          'hrtf',hrtf, ...
                          'array','linear');
        amt_disp('Calculating figure 6/6');
        loc_error_15 = ...
            wierstorf2013(X,Y,phi,xs,src,L,'wfs', ...
                          'resolution',135, ...
                          'nls',15, ...
                          'hrtf',hrtf, ...
                          'array','linear');

        output.loc_error_3 = loc_error_3;
        output.loc_error_8 = loc_error_8;
        output.loc_error_15 = loc_error_15;
        output.aud_event_3 = aud_event_3;
        output.aud_event_8 = aud_event_8;
        output.aud_event_15 = aud_event_15;
        output.x0_3 = x0_3;
        output.x0_8 = x0_8;
        output.x0_15 = x0_15;
        output.xaxis_31 = xaxis_31;
        output.yaxis_31 = yaxis_31;
        output.xaxis_135 = xaxis_135;
        output.yaxis_135 = yaxis_135;

        amt_cache('set', 'fig11a', output);
    end;

    if flags.do_plot
        % ------ Plotting ------
        conf.plot.realloudspeakers = true;
        conf.plot.lssize = 0.16;
        figure;
        subplot(2,3,1);
        [u,v,~] = pol2cart(rad(output.aud_event_3+90),ones(size(output.aud_event_3)), ...
            zeros(size(output.aud_event_3)));
        quiver(output.xaxis_31,output.yaxis_31,u',v',0.5);
        axis([-2.13 2.13 -3.3 0.2])
        draw_loudspeakers(output.x0_3,[1 1 0],conf);
        xlabel('x/m');
        ylabel('y/m');
        subplot(2,3,2);
        [u,v,~] = pol2cart(rad(output.aud_event_8+90),ones(size(output.aud_event_8)), ...
            zeros(size(output.aud_event_8)));
        quiver(output.xaxis_31,output.yaxis_31,u',v',0.5);
        axis([-2.13 2.13 -3.3 0.2])
        draw_loudspeakers(output.x0_8,[1 1 0],conf);
        xlabel('x/m');
        ylabel('y/m');
        subplot(2,3,3);
        [u,v,~] = pol2cart(rad(output.aud_event_15+90),ones(size(output.aud_event_15)), ...
            zeros(size(output.aud_event_15)));
        quiver(output.xaxis_31,output.yaxis_31,u',v',0.5);
        axis([-2.13 2.13 -3.3 0.2])
        draw_loudspeakers(output.x0_15,[1 1 0],conf);
        xlabel('x/m');
        ylabel('y/m');
        subplot(2,3,4)
        imagesc(output.xaxis_135,output.yaxis_135,abs(output.loc_error_3'));
        turn_imagesc;
        axis([-2.13 2.13 -3.3 0.2])
        draw_loudspeakers(output.x0_3,[1 1 0],conf);
        xlabel('x/m');
        ylabel('y/m');
        subplot(2,3,5)
        imagesc(output.xaxis_135,output.yaxis_135,abs(output.loc_error_8'));
        turn_imagesc;
        axis([-2.13 2.13 -3.3 0.2])
        draw_loudspeakers(output.x0_8,[1 1 0],conf);
        xlabel('x/m');
        ylabel('y/m');
        subplot(2,3,6)
        imagesc(output.xaxis_135,output.yaxis_135,abs(output.loc_error_15'));
        turn_imagesc;
        axis([-2.13 2.13 -3.3 0.2])
        draw_loudspeakers(output.x0_15,[1 1 0],conf);
        xlabel('x/m');
        ylabel('y/m');
    end;
end

%% ------ F I G U R E  11b -----------------------------------------------
if flags.do_fig11b

    % listening area
    X = [-2 2];
    Y = [-3.15 -0.15];
    % orientation of the listener (always to the front)
    phi = pi/2;
    % position of the virtual point source
    xs = [0 -1];
    src = 'pw';
    % array size
    L = 2.85;

    output = amt_cache('get', 'fig11b', flags.cachemode);
    if isempty(output)
        amt_disp('Warning: this will take a long time!');
        hrtf = amt_load('wierstorf2013', 'qu_kemar_anechoic_3m.sofa');
        % 3 loudspeakers
        amt_disp('Calculating figure 1/6');
        [~,aud_event_3,~,xaxis_31,yaxis_31,x0_3] = ...
            wierstorf2013(X,Y,phi,xs,src,L,'wfs', ...
                          'resolution',31, ...
                          'nls',3, ...
                          'hrtf',hrtf, ...
                          'array','linear');
        amt_disp('Calculating figure 2/6');
        [loc_error_3,~,~,xaxis_135,yaxis_135] = ...
            wierstorf2013(X,Y,phi,xs,src,L,'wfs', ...
                          'resolution',135, ...
                          'nls',3, ...
                          'hrtf',hrtf, ...
                          'array','linear');
        % 8 loudspeakers
        amt_disp('Calculating figure 3/6');
        [~,aud_event_8,~,~,~,x0_8] = ...
            wierstorf2013(X,Y,phi,xs,src,L,'wfs', ...
                          'resolution',31, ...
                          'nls',8, ...
                          'hrtf',hrtf, ...
                          'array','linear');
        amt_disp('Calculating figure 4/6');
        loc_error_8 = ...
            wierstorf2013(X,Y,phi,xs,src,L,'wfs', ...
                          'resolution',135, ...
                          'nls',8, ...
                          'hrtf',hrtf, ...
                          'array','linear');
        % 15 loudspeakers
        amt_disp('Calculating figure 5/6');
        [~,aud_event_15,~,~,~,x0_15] = ...
            wierstorf2013(X,Y,phi,xs,src,L,'wfs', ...
                          'resolution',31, ...
                          'nls',15, ...
                          'hrtf',hrtf, ...
                          'array','linear');
        amt_disp('Calculating figure 6/6');
        loc_error_15 = ...
            wierstorf2013(X,Y,phi,xs,src,L,'wfs', ...
                          'resolution',135, ...
                          'nls',15, ...
                          'hrtf',hrtf, ...
                          'array','linear');

        output.loc_error_3 = loc_error_3;
        output.loc_error_8 = loc_error_8;
        output.loc_error_15 = loc_error_15;
        output.aud_event_3 = aud_event_3;
        output.aud_event_8 = aud_event_8;
        output.aud_event_15 = aud_event_15;
        output.x0_3 = x0_3;
        output.x0_8 = x0_8;
        output.x0_15 = x0_15;
        output.xaxis_31 = xaxis_31;
        output.yaxis_31 = yaxis_31;
        output.xaxis_135 = xaxis_135;
        output.yaxis_135 = yaxis_135;

        amt_cache('set', 'fig11b', output);
    end;

    if flags.do_plot
        % ------ Plotting ------
        conf.plot.realloudspeakers = true;
        conf.plot.lssize = 0.16;
        figure;
        subplot(2,3,1);
        [u,v,~] = pol2cart(rad(output.aud_event_3+90),ones(size(output.aud_event_3)), ...
            zeros(size(output.aud_event_3)));
        quiver(output.xaxis_31,output.yaxis_31,u',v',0.5);
        axis([-2.13 2.13 -3.3 0.2])
        draw_loudspeakers(output.x0_3,[1 1 0],conf);
        xlabel('x/m');
        ylabel('y/m');
        subplot(2,3,2);
        [u,v,~] = pol2cart(rad(output.aud_event_8+90),ones(size(output.aud_event_8)), ...
            zeros(size(output.aud_event_8)));
        quiver(output.xaxis_31,output.yaxis_31,u',v',0.5);
        axis([-2.13 2.13 -3.3 0.2])
        draw_loudspeakers(output.x0_8,[1 1 0],conf);
        xlabel('x/m');
        ylabel('y/m');
        subplot(2,3,3);
        [u,v,~] = pol2cart(rad(output.aud_event_15+90),ones(size(output.aud_event_15)), ...
            zeros(size(output.aud_event_15)));
        quiver(output.xaxis_31,output.yaxis_31,u',v',0.5);
        axis([-2.13 2.13 -3.3 0.2])
        draw_loudspeakers(output.x0_15,[1 1 0],conf);
        xlabel('x/m');
        ylabel('y/m');
        subplot(2,3,4)
        imagesc(output.xaxis_135,output.yaxis_135,abs(output.loc_error_3'));
        turn_imagesc;
        axis([-2.13 2.13 -3.3 0.2])
        draw_loudspeakers(output.x0_3,[1 1 0],conf);
        xlabel('x/m');
        ylabel('y/m');
        subplot(2,3,5)
        imagesc(output.xaxis_135,output.yaxis_135,abs(output.loc_error_8'));
        turn_imagesc;
        axis([-2.13 2.13 -3.3 0.2])
        draw_loudspeakers(output.x0_8,[1 1 0],conf);
        xlabel('x/m');
        ylabel('y/m');
        subplot(2,3,6)
        imagesc(output.xaxis_135,output.yaxis_135,abs(output.loc_error_15'));
        turn_imagesc;
        axis([-2.13 2.13 -3.3 0.2])
        draw_loudspeakers(output.x0_15,[1 1 0],conf);
        xlabel('x/m');
        ylabel('y/m');
    end;
end

%% ------ F I G U R E  12a -----------------------------------------------
if flags.do_fig12a

    % listening area
    X = [-2.1 2.1];
    Y = [-2.1 2.1];
    % orientation of the listener (always to the front)
    phi = pi/2;
    % position of the virtual point source
    xs = [0 2.5];
    src = 'ps';
    % array size
    L = 3;

    output = amt_cache('get', 'fig12a', flags.cachemode);
    if isempty(output)
        amt_disp('Warning: this will take a long time!');
        hrtf = amt_load('wierstorf2013', 'qu_kemar_anechoic_3m.sofa');
        % 14 loudspeakers
        amt_disp('Calculating figure 1/6');
        [~,aud_event_14,~,xaxis_21,yaxis_21,x0_14] = ...
            wierstorf2013(X,Y,phi,xs,src,L,'wfs', ...
                          'resolution',21, ...
                          'nls',14, ...
                          'hrtf',hrtf, ...
                          'array','circle');
        amt_disp('Calculating figure 2/6');
        [loc_error_14,~,~,xaxis_135,yaxis_135] = ...
            wierstorf2013(X,Y,phi,xs,src,L,'wfs', ...
                          'resolution',135, ...
                          'nls',14, ...
                          'hrtf',hrtf, ...
                          'array','circle');
        % 28 loudspeakers
        amt_disp('Calculating figure 3/6');
        [~,aud_event_28,~,~,~,x0_28] = ...
            wierstorf2013(X,Y,phi,xs,src,L,'wfs', ...
                          'resolution',21, ...
                          'nls',28, ...
                          'hrtf',hrtf, ...
                          'array','circle');
        amt_disp('Calculating figure 4/6');
        loc_error_28 = ...
            wierstorf2013(X,Y,phi,xs,src,L,'wfs', ...
                          'resolution',135, ...
                          'nls',28, ...
                          'hrtf',hrtf, ...
                          'array','circle');
        % 56 loudspeakers
        amt_disp('Calculating figure 5/6');
        [~,aud_event_56,~,~,~,x0_56] = ...
            wierstorf2013(X,Y,phi,xs,src,L,'wfs', ...
                          'resolution',21, ...
                          'nls',56, ...
                          'hrtf',hrtf, ...
                          'array','circle');
        amt_disp('Calculating figure 6/6');
        loc_error_56 = ...
            wierstorf2013(X,Y,phi,xs,src,L,'wfs', ...
                          'resolution',135, ...
                          'nls',56, ...
                          'hrtf',hrtf, ...
                          'array','circle');

        output.loc_error_14 = loc_error_14;
        output.loc_error_28 = loc_error_28;
        output.loc_error_56 = loc_error_56;
        output.aud_event_14 = aud_event_14;
        output.aud_event_28 = aud_event_28;
        output.aud_event_56 = aud_event_56;
        output.x0_14 = x0_14;
        output.x0_28 = x0_28;
        output.x0_56 = x0_56;
        output.xaxis_21 = xaxis_21;
        output.yaxis_21 = yaxis_21;
        output.xaxis_135 = xaxis_135;
        output.yaxis_135 = yaxis_135;

        amt_cache('set', 'fig12a', output);
    end;

    if flags.do_plot
        % ------ Plotting ------
        conf.plot.realloudspeakers = true;
        conf.plot.lssize = 0.16;
        figure;
        subplot(2,3,1);
        [u,v,~] = pol2cart(rad(output.aud_event_14+90),ones(size(output.aud_event_14)), ...
            zeros(size(output.aud_event_14)));
        quiver(output.xaxis_21,output.yaxis_21,u',v',0.5);
        axis([-2.13 2.13 -3.3 0.2])
        draw_loudspeakers(output.x0_14,[1 1 0],conf);
        xlabel('x/m');
        ylabel('y/m');
        subplot(2,3,2);
        [u,v,~] = pol2cart(rad(output.aud_event_28+90),ones(size(output.aud_event_28)), ...
            zeros(size(output.aud_event_28)));
        quiver(output.xaxis_21,output.yaxis_21,u',v',0.5);
        axis([-2.13 2.13 -3.3 0.2])
        draw_loudspeakers(output.x0_28,[1 1 0],conf);
        xlabel('x/m');
        ylabel('y/m');
        subplot(2,3,3);
        [u,v,~] = pol2cart(rad(output.aud_event_56+90),ones(size(output.aud_event_56)), ...
            zeros(size(output.aud_event_56)));
        quiver(output.xaxis_21,output.yaxis_21,u',v',0.5);
        axis([-2.13 2.13 -3.3 0.2])
        draw_loudspeakers(output.x0_56,[1 1 0],conf);
        xlabel('x/m');
        ylabel('y/m');
        subplot(2,3,4)
        imagesc(output.xaxis_135,output.yaxis_135,abs(output.loc_error_14'));
        turn_imagesc;
        axis([-2.13 2.13 -3.3 0.2])
        draw_loudspeakers(output.x0_14,[1 1 0],conf);
        xlabel('x/m');
        ylabel('y/m');
        subplot(2,3,5)
        imagesc(output.xaxis_135,output.yaxis_135,abs(output.loc_error_28'));
        turn_imagesc;
        axis([-2.13 2.13 -3.3 0.2])
        draw_loudspeakers(output.x0_28,[1 1 0],conf);
        xlabel('x/m');
        ylabel('y/m');
        subplot(2,3,6)
        imagesc(output.xaxis_135,output.yaxis_135,abs(output.loc_error_56'));
        turn_imagesc;
        axis([-2.13 2.13 -3.3 0.2])
        draw_loudspeakers(output.x0_56,[1 1 0],conf);
        xlabel('x/m');
        ylabel('y/m');
    end;
end

%% ------ F I G U R E  12b -----------------------------------------------
if flags.do_fig12b

    % listening area
    X = [-2.1 2.1];
    Y = [-2.1 2.1];
    % orientation of the listener (always to the front)
    phi = pi/2;
    % position of the virtual point source
    xs = [0 -1];
    src = 'pw';
    % array size
    L = 3;

    output = amt_cache('get', 'fig12b', flags.cachemode);
    if isempty(output)
        amt_disp('Warning: this will take a long time!');
        hrtf = amt_load('wierstorf2013', 'qu_kemar_anechoic_3m.sofa');
        % 14 loudspeakers
        amt_disp('Calculating figure 1/6');
        [~,aud_event_14,~,xaxis_21,yaxis_21,x0_14] = ...
            wierstorf2013(X,Y,phi,xs,src,L,'wfs', ...
                          'resolution',21, ...
                          'nls',14, ...
                          'hrtf',hrtf, ...
                          'array','circle');
        amt_disp('Calculating figure 2/6');
        [loc_error_14,~,~,xaxis_135,yaxis_135] = ...
            wierstorf2013(X,Y,phi,xs,src,L,'wfs', ...
                          'resolution',135, ...
                          'nls',14, ...
                          'hrtf',hrtf, ...
                          'array','circle');
        % 28 loudspeakers
        amt_disp('Calculating figure 3/6');
        [~,aud_event_28,~,~,~,x0_28] = ...
            wierstorf2013(X,Y,phi,xs,src,L,'wfs', ...
                          'resolution',21, ...
                          'nls',28, ...
                          'hrtf',hrtf, ...
                          'array','circle');
        amt_disp('Calculating figure 4/6');
        loc_error_28 = ...
            wierstorf2013(X,Y,phi,xs,src,L,'wfs', ...
                          'resolution',135, ...
                          'nls',28, ...
                          'hrtf',hrtf, ...
                          'array','circle');
        % 56 loudspeakers
        amt_disp('Calculating figure 5/6');
        [~,aud_event_56,~,~,~,x0_56] = ...
            wierstorf2013(X,Y,phi,xs,src,L,'wfs', ...
                          'resolution',21, ...
                          'nls',56, ...
                          'hrtf',hrtf, ...
                          'array','circle');
        amt_disp('Calculating figure 6/6');
        loc_error_56 = ...
            wierstorf2013(X,Y,phi,xs,src,L,'wfs', ...
                          'resolution',135, ...
                          'nls',56, ...
                          'hrtf',hrtf, ...
                          'array','circle');

        output.loc_error_14 = loc_error_14;
        output.loc_error_28 = loc_error_28;
        output.loc_error_56 = loc_error_56;
        output.aud_event_14 = aud_event_14;
        output.aud_event_28 = aud_event_28;
        output.aud_event_56 = aud_event_56;
        output.x0_14 = x0_14;
        output.x0_28 = x0_28;
        output.x0_56 = x0_56;
        output.xaxis_21 = xaxis_21;
        output.yaxis_21 = yaxis_21;
        output.xaxis_135 = xaxis_135;
        output.yaxis_135 = yaxis_135;

        amt_cache('set', 'fig12b', output);
    end;

    if flags.do_plot
        % ------ Plotting ------
        conf.plot.realloudspeakers = true;
        conf.plot.lssize = 0.16;
        figure;
        subplot(2,3,1);
        [u,v,~] = pol2cart(rad(output.aud_event_14+90),ones(size(output.aud_event_14)), ...
            zeros(size(output.aud_event_14)));
        quiver(output.xaxis_21,output.yaxis_21,u',v',0.5);
        axis([-2.13 2.13 -3.3 0.2])
        draw_loudspeakers(output.x0_14,[1 1 0],conf);
        xlabel('x/m');
        ylabel('y/m');
        subplot(2,3,2);
        [u,v,~] = pol2cart(rad(output.aud_event_28+90),ones(size(output.aud_event_28)), ...
            zeros(size(output.aud_event_28)));
        quiver(output.xaxis_21,output.yaxis_21,u',v',0.5);
        axis([-2.13 2.13 -3.3 0.2])
        draw_loudspeakers(output.x0_28,[1 1 0],conf);
        xlabel('x/m');
        ylabel('y/m');
        subplot(2,3,3);
        [u,v,~] = pol2cart(rad(output.aud_event_56+90),ones(size(output.aud_event_56)), ...
            zeros(size(output.aud_event_56)));
        quiver(output.xaxis_21,output.yaxis_21,u',v',0.5);
        axis([-2.13 2.13 -3.3 0.2])
        draw_loudspeakers(output.x0_56,[1 1 0],conf);
        xlabel('x/m');
        ylabel('y/m');
        subplot(2,3,4)
        imagesc(output.xaxis_135,output.yaxis_135,abs(output.loc_error_14'));
        turn_imagesc;
        axis([-2.13 2.13 -3.3 0.2])
        draw_loudspeakers(output.x0_14,[1 1 0],conf);
        xlabel('x/m');
        ylabel('y/m');
        subplot(2,3,5)
        imagesc(output.xaxis_135,output.yaxis_135,abs(output.loc_error_28'));
        turn_imagesc;
        axis([-2.13 2.13 -3.3 0.2])
        draw_loudspeakers(output.x0_28,[1 1 0],conf);
        xlabel('x/m');
        ylabel('y/m');
        subplot(2,3,6)
        imagesc(output.xaxis_135,output.yaxis_135,abs(output.loc_error_56'));
        turn_imagesc;
        axis([-2.13 2.13 -3.3 0.2])
        draw_loudspeakers(output.x0_56,[1 1 0],conf);
        xlabel('x/m');
        ylabel('y/m');
    end;
end