function [out,mpar] = eurich2022_processing(stimulus,mpar)
%eurich2022_processing Binaural processing stage of the Eurich et al. (2022) model
% Usage: [out,mpar] = eurich2022_processing(stimulus,mpar)
%
% Input parameters:
% stim: Matrix containing stimulus (columns 1 and 2) and template (columns 3 and 4)
%
% mpar: Structure with the following model parameters:
%
% - fs: sampling frequency of model (in Hz)
% - Filters_per_ERB_aud: spacing of peripheral filter central frequencies (in ERB)
% - GT_bandwidth_factor: factor of gammatone filter bandwidth relative to "standard" (ERB = 79 Hz at fc = 500 Hz)
% - GT_lowest_center_frequency: lower bound of gammatone filterbank (in Hz)
% - GT_highest_center_frequency: higher bound of gammatone filterbank (in Hz)
% - GT_fix_center_frequency: fixed center frequency of one of the filters ((in Hz)
% - GT_filterorder: filter order of each of the gammatone filters
% - interference_sigma: standard deviation of the Gaussian window in the across-frequency incoherence interference
% - iKernelThresh: threshold above which a value of the Gaussian filter window is used
% - rho_max upper limit of encoded interaural coherence (i.e. internal noise)
% - monaural_internal_noise_sigma: standard deviation of the Gaussian level-dependent internal noise of the monaural feature
% - binaural_internal_noise_sigma: standard deviation of the Gaussian internal noise of the binaural feature
% - target_channel: index of the channel to be selected for processing in eurich2022_decision
%
%
% Output parameters:
% out: Matrix with four columns:
%
% - binaural features of the reference signal (complex correlation coefficient gamma)
% - monaural feature of the reference signal (DC power of 500 Hz band)
% - binaural features of the test signal (complex correlation coefficient gamma)
% - monaural feature of the test signal (DC power of 500 Hz band)
%
% mpar: Updated structure with model parameters
%
% See also: eurich2022 exp_eurich2022
%
% References:
% B. Eurich, J. Encke, S. D. Ewert, and M. Dietz. Lower interaural
% coherence in off-signal bands impairs binaural detection. The Journal
% of the Acoustical Society of America, 151(6):3927--3936, 06 2022.
% [1].pdf ]
%
% References
%
% 1. https://pubs.aip.org/asa/jasa/article-pdf/151/6/3927/16528275/3927_1_online.pdf
%
%
% Url: http://amtoolbox.org/amt-1.5.0/doc/modelstages/eurich2022_processing.php
% #Author: Bernhard Eurich (2022): original implementation
% #Author: Piotr Majdak (2023): adaptation to AMT 1.4
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
% ==== Gammatone filtering ====
% filterbank object
sFB = hohmann2002(mpar.fs,mpar.GT_lowest_center_frequency,mpar.GT_fix_center_frequency,...
mpar.GT_highest_center_frequency, mpar.GT_filters_per_ERBaud,'bandwidth_factor',mpar.GT_bandwidth_factor);
mpar.idx_of_500Hz_channel = find(round(sFB.center_frequencies_hz) == mpar.GT_fix_center_frequency);
% apply filterbank on stimulus
filtered_signal(:,:,1) = hohmann2002_process(sFB,stimulus(:,1));
filtered_signal(:,:,2) = hohmann2002_process(sFB,stimulus(:,2));
% ==== Binaural Stage ====
% complex correlation coefficient gamma for every filter channel
gamma = mean(filtered_signal(:,:,1) .* conj(filtered_signal(:,:,2))) ...
./ sqrt(mean(abs(filtered_signal(:,:,1)).^2) .* mean(abs(filtered_signal(:,:,2)).^2));
% across-channel interference
channel_index = 1:length(sFB.center_frequencies_hz); % to consider all channels
% for-loop represents convolution with window:
% * limit coherence with respect to one channel (index g)
% * create weighting window
% * apply window to coherence where channel g is center
% * --> for every channel --> same effect as convolution but now with coherence limitation applied with respect to each channel
% need odd number for interference window
flS = length(sFB.center_frequencies_hz);
flidx = mod(flS,2)<1;
mpar.KernelLen = flS - flidx;
if mpar.KernelLen == 1 | mpar.interference_sigma <= 0.11 % somewhat arbitrary --> decision whether interference happens
interference_window = 1;
interfered_coherence = abs(gamma);
interfered_coherence_atanh_rho_max = atanh(mpar.rho_max * interfered_coherence);
elseif find(mpar.target_channel)
Window_range = [-floor(mpar.KernelLen/2):ceil(mpar.KernelLen/2)-1];
vExpWin0 = exp(-abs(Window_range)/(mpar.GT_filters_per_ERBaud*mpar.interference_sigma));
vExpWin_ge = vExpWin0(ge(vExpWin0,mpar.iKernelThresh));
vExpWin_norm = vExpWin_ge ./ sum(vExpWin_ge);
% interference of IPD fluctuations means only impact if off-frequency coherence lower than on-frequency coherence
coherence_lower = min(abs(gamma),abs(gamma(mpar.idx_of_500Hz_channel)));
interference_range = mpar.idx_of_500Hz_channel - floor(length(vExpWin_norm)/2):mpar.idx_of_500Hz_channel + floor(length(vExpWin_norm)/2);
interfered_coherence = sum(coherence_lower(interference_range) .* vExpWin_norm);
interfered_coherence_atanh_rho_max = atanh(mpar.rho_max .* interfered_coherence);
else
for g = channel_index
% only lower off-frequency coherence is considered (compare with on-freq and take lower)
coherence_lower = min(abs(gamma),abs(gamma(g)));
zeros_padd = NaN(1, floor(length(coherence_lower)/2));
coherence_lower_zeropadd = [zeros_padd coherence_lower zeros_padd];
% window for channel interaction
Window_range = [-floor(mpar.KernelLen/2):ceil(mpar.KernelLen/2)-1];
interference_window = NaN(1,2*length(Window_range)-1);
window_idx1 = floor(length(interference_window)/2)-floor(length(Window_range)/2);
window_idx2 = floor(length(interference_window)/2)+floor(length(Window_range)/2);
interference_window(window_idx1:window_idx2) = ...
exp(-abs(Window_range)/(mpar.GT_filters_per_ERBaud*mpar.interference_sigma));
% place the window according to g (= temporary center channel)
[~,center_of_window] = max(interference_window);
interference_window_temp = interference_window(g:end-g);
interference_window_areanorm = interference_window./nansum(interference_window);
% actual interference happening here
interfered_coherence = nansum(coherence_lower .* interference_window_areanorm(window_idx1:window_idx1+length(coherence_lower)-1));
% select current interfered channel and apply internal noise (define maximum coherence)
interfered_coherence_atanh_rho_max(g) = atanh(mpar.rho_max * interfered_coherence);
end
end
% write new IPD at f while the first 19 entries are empty
IPD = angle(gamma);
% binaural decision variable: complex correlation coefficient consisting of interfered coherence and (non-interfered) IPD
binaural_feature = interfered_coherence_atanh_rho_max .* exp(1i*IPD);%
%% ==== MONAURAL PATHWAY ====
% Long-term DC of central channel: squared mean
monaural_feature = squeeze( mean( abs(filtered_signal(:,channel_index,1)),1) .^2 / 2);
% ==== ROUTE DECISION VALUES TO OUTPUT ====
out = cat(1,binaural_feature,monaural_feature);
end