function [ la,le,ci ] = langendijk2002_likelihood( p,rang,tang,target,response )
%LANGENDIJK2002_LIKELIHOOD Likelihood estimation
%
% Usage: [la,le,ci] = langendijk2002_likelihood(p,rang,tang,target,response)
%
% Input parameters:
% p : pdf matrix
% rang : polar angles of possible response angles
% tang : polar angles of possible target angles
% target : target polar angles of localization test
% response : response polar angles of localization test
%
% Output parameters:
% la : actual likelihood
% le : expected likelihood
% ci : 99% confidence interval for expected likelihood
%
% estimates the likelihood for evaluating model performance
%
% See also: plot_langendijk2002_likelihood, langendijk2002
%
% References:
% E. Langendijk and A. Bronkhorst. Contribution of spectral cues to human
% sound localization. J. Acoust. Soc. Am., 112:1583--1596, 2002.
%
%
% Url: http://amtoolbox.org/amt-1.5.0/doc/modelstages/langendijk2002_likelihood.php
% #StatusDoc: Perfect
% #StatusCode: Perfect
% #Verification: Verified
% #Requirements: none
% #Author : Robert Baumgartner (2013), OEAW Acoustical Research Institute
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
nt=length(target);
% pa represents pdf values of actual responses
pa=interp2([-90;rang(:);270],[-90;tang(:);270], ...
[zeros(1,size(p,2)+2);[zeros(size(p,1),1),p,zeros(size(p,1),1)];...
zeros(1,size(p,2)+2)] ,target,response);
la=-2*sum(log(pa))*55/nt; % actual likelihood
% random generator
lex=zeros(100,1);
for ind=1:100
pe=zeros(size(target));
for ind1=1:nt
post=find(tang>=target(ind1),1); % target position
% post=randi(size(p,2),1);
posr = discreteinvrnd(p(:,post),1,1);
pe(ind1)=p(posr,post);
end
lex(ind)=-2*sum(log(pe))*55/nt;
end
le=mean(lex); % expected likelihood
err=2.58*std(lex);
ci=[le-err le+err]; % confidence interval
function [ X ] = discreteinvrnd(p,m,n)
% DISCRETEINVRND implements an inversion method for a discrete distribution
% with probability mass vector p and dimensions m,n
% Usage: [ X ] = discreteinvrnd(p,m,n)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% AUTHOR : Robert Baumgartner, OEAW
% latest update: 2010-07-21
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
X = zeros(m,n);
for i = 1:m*n
c = cumsum(p);
u = max(c)*rand;
X(i) = find(u < c ,1);
end