function conductance = lyon2011_detect(x_in)
%LYON2011_DETECT calculates conductance using a sigmoidal detection nonlinearity
%
% Usage: conductance = lyon2011_detect(x_in)
%
% Input parameters:
% x_in : input signal
%
% Output parameters:
% conductance : conductance
%
% An IHC-like sigmoidal detection nonlinearity for the CARFAC.
% Resulting conductance is in about [0...1.3405]
%
%
% See also: lyon2011 demo_lyon2011
%
% References:
% R. F. Lyon. Cascades of two-pole–two-zero asymmetric resonators are
% good models of peripheral auditory function. J. Acoust. Soc. Am.,
% 130(6), 2011.
%
%
% Url: http://amtoolbox.org/amt-1.5.0/doc/modelstages/lyon2011_detect.php
% #StatusDoc: Good
% #StatusCode: Good
% #Verification: Unknown
% #License: Apache2
% #Author: Richard F. Lyon (2013): original implementation (https://github.com/google/carfac)
% #Author: Amin Saremi (2016): adaptations for the AMT
% #Author: Clara Hollomey (2021): integration in the AMT 1.0
% This file is licensed unter the Apache License Version 2.0 which details can
% be found in the AMT directory "licences" and at
% <http://www.apache.org/licenses/LICENSE-2.0>.
% You must not use this file except in compliance with the Apache License
% Version 2.0. Unless required by applicable law or agreed to in writing, this
% file is distributed on an "as is" basis, without warranties or conditions
% of any kind, either express or implied.
a = 0.175; % offset of low-end tail into neg x territory
% this parameter is adjusted for the book, to make the 20% DC
% response threshold at 0.1
set = x_in > -a;
z = x_in(set) + a;
% zero is the final answer for many points:
conductance = zeros(size(x_in));
conductance(set) = z.^3 ./ (z.^3 + z.^2 + 0.1);
%% other things I tried:
%
% % zero is the final answer for many points:
% conductance = zeros(size(x_in));
%
% order = 4; % 3 is a little cheaper; 4 has continuous second deriv.
%
% % thresholds and terms involving just a, b, s are scalar ops; x are vectors
%
% switch order
% case 3
% a = 0.15; % offset of low-end tail into neg x territory
% b = 1; % 0.44; % width of poly segment
% slope = 0.7;
%
% threshold1 = -a;
% threshold2 = b - a;
%
% set2 = x_in > threshold2;
% set1 = x_in > threshold1 & ~set2;
%
% s = slope/(2*b - 3/2*b^2); % factor to make slope at breakpoint
% t = s * (b^2 - (b^3) / 2);
%
% x = x_in(set1) - threshold1;
% conductance(set1) = s * x .* (x - x .* x / 2); % x.^2 - 0.5x.^3
%
% x = x_in(set2) - threshold2;
% conductance(set2) = t + slope * x ./ (1 + x);
%
%
% case 4
% a = 0.24; % offset of low-end tail into neg x territory
% b = 0.57; % width of poly segment; 0.5 to end at zero curvature,
% a = 0.18; % offset of low-end tail into neg x territory
% b = 0.57; % width of poly segment; 0.5 to end at zero curvature,
% % 0.57 to approx. match curvature of the upper segment.
% threshold1 = -a;
% threshold2 = b - a;
%
%
% set2 = x_in > threshold2;
% set1 = x_in > threshold1 & ~set2;
%
% s = 1/(3*b^2 - 4*b^3); % factor to make slope 1 at breakpoint
% t = s * (b^3 - b^4);
%
% x = x_in(set1) - threshold1;
% conductance(set1) = s * x .* x .* (x - x .* x); % x.^3 - x.^4
%
% x = x_in(set2) - threshold2;
% conductance(set2) = t + x ./ (1 + x);
%
% end
%