THE AUDITORY MODELING TOOLBOX

This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).

View the help

Go to function

DEMO_ADAPTLOOP - Show the effect of adaptation

Program code:

%DEMO_ADAPTLOOP  Show the effect of adaptation
%
%   This script demonstrates the effect of adaptation applied to a test
%   signal with and without noise.
%
%   The test signal is made of a sinosoidal ramp up and down between 0
%   and 1.
%
%   Figure 1: Clean test signal
%
%      This figure shows the effect of adaptation on the clean test signal with and
%      without overshoot limiting.
%
%   Figure 2: Noisy test signal
%
%      This figure shows the effect of adaptation on the noisy test signal
%      with and without overshoot limiting. Notice that in the second plot,
%      the initial spike at the beginning of the signal caused from the sharp
%      transition from complete silence to noise is magnitudes larger than
%      the values in the rest of the output.
%
%   See also: adaptloop
%
%   Url: http://amtoolbox.sourceforge.net/amt-0.9.9/doc/demos/demo_adaptloop.php

% Copyright (C) 2009-2015 Piotr Majdak and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 0.9.9
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program.  If not, see <http://www.gnu.org/licenses/>.


siglen=10000;
fs=10000;

% This is the default minimum level (0 dB) of the adaptation loops. The
% loops assume that a signal is never silent, and sets all values below
% minlvl equal to minlvl. For plotting purposes, we do the same explicitly.
minlvl=setdbspl(0);

part=siglen/10;

insig=[zeros(2*part,1);
       rampup(part);
       ones(2*part,1);
       rampdown(part);
       zeros(4*part,1)];

insig=max(insig,minlvl);

figure;

x=(0:siglen-1)/fs;
subplot(3,1,1);
plot(x,20*log10(insig));
title('Input signal');
xlabel('time / s');
ylabel('level / Db');

subplot(3,1,2);
plot(x,adaptloop(insig,fs,0));
title('Adaptation.');
xlabel('time / s');
ylabel('level / model units');

subplot(3,1,3);
plot(x,adaptloop(insig,fs));
title('Adaptation w. limiting.');
ylabel('level / model units');
xlabel('time / s');

% Add a low level of noise
insig=abs(insig+0.001*randn(siglen,1));
insig=max(insig,minlvl);

figure;

subplot(3,1,1);
plot(x,20*log10(insig));
title('Input signal with added Gaussian noise.');
ylabel('level / Db');
xlabel('time / s');

subplot(3,1,2);
plot(x,adaptloop(insig,fs,0));
title('Adaptation.');
ylabel('level / model units');
xlabel('time / s');

subplot(3,1,3);
plot(x,adaptloop(insig,fs));
title('Adaptation w. limiting.');
ylabel('level / model units');
xlabel('time / s');