THE AUDITORY MODELING TOOLBOX

This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).

View the code

Go to function

DEMO_HOHMANN2002 - Shows how to use the gammatone filterbank from Hohmann(2002)

Part I: This example creates a 4th order gammatone filter with a center frequency of 1000Hz and a 3dB-bandwidth of 100Hz, suitable for input signals with a sampling frequency of 10kHz.

Part II: This example program demonstrates how to create and use the gammatone filterbank within the framework of Hohmann (2002).

Part III: This Example demonstrates how to create and how to use the combined analysis-synthesis Filterbank system.

This code produces the following output:

The filter coefficient of this filter is: 0.97376 + 0.13968
Its normalization factor is             : 1.4028e-07

Figure 1 shows the first 800 samples of
the impulse response of a 4th order gammatone filter with a center
frequency of ϨHz and a 3dB-bandwidth of dHz.
Real part, imaginary part, and absolute value of the impulse
response are plotted as lines 1, 2, and 3, respectively.

Figure 2 shows the frequency response function of this filter
in dB over frequency in Hz.
Building a filterbank for 16276Hz sampling frequency.
Lower cutoff frequency: 70Hz
Upper cutoff frequency: 6700Hz
Base frequency        : 1000Hz
filters per ERB       : 1

filterbank contains 30 filters:
 # |     f / Hz  |  normalization |     coefficient

  1|   73.223641 |   5.265982e-08 | 0.986867 + 0.027903i
  2|  107.651956 |   8.085647e-08 | 0.984969 + 0.040957i
  3|  146.004401 |   1.241101e-07 | 0.982654 + 0.055445i
  4|  188.728245 |   1.904318e-07 | 0.979828 + 0.071514i
  5|  236.321739 |   2.920749e-07 | 0.976374 + 0.089322i
  6|  289.339925 |   4.477658e-07 | 0.972152 + 0.109040i
  7|  348.401107 |   6.860992e-07 | 0.966986 + 0.130846i
  8|  414.194064 |   1.050696e-06 | 0.960665 + 0.154929i
  9|  487.486082 |   1.608029e-06 | 0.952929 + 0.181478i
 10|  569.131901 |   2.459271e-06 | 0.943462 + 0.210687i
 11|  660.083684 |   3.758199e-06 | 0.931880 + 0.242737i
 12|  761.402124 |   5.738207e-06 | 0.917721 + 0.277794i
 13|  874.268807 |   8.752923e-06 | 0.900427 + 0.315986i
 14| 1000.000000 |   1.333716e-05 | 0.879330 + 0.357389i
 15| 1140.061995 |   2.029808e-05 | 0.853641 + 0.401992i
 16| 1296.088211 |   3.085102e-05 | 0.822431 + 0.449661i
 17| 1469.898248 |   4.682124e-05 | 0.784622 + 0.500088i
 18| 1663.519097 |   7.094204e-05 | 0.738989 + 0.552724i
 19| 1879.208790 |   1.072934e-04 | 0.684168 + 0.606690i
 20| 2119.482727 |   1.619433e-04 | 0.618693 + 0.660680i
 21| 2387.143012 |   2.438807e-04 | 0.541066 + 0.712827i
 22| 2685.311132 |   3.663608e-04 | 0.449888 + 0.760566i
 23| 3017.464361 |   5.488321e-04 | 0.344054 + 0.800486i
 24| 3387.476311 |   8.196695e-04 | 0.223067 + 0.828203i
 25| 3799.662107 |   1.220009e-03 | 0.087477 + 0.838291i
 26| 4258.828711 |   1.809067e-03 | -0.060519 + 0.824359i
 27| 4770.330980 |   2.671403e-03 | -0.216318 + 0.779363i
 28| 5340.134118 |   3.926697e-03 | -0.372053 + 0.696340i
 29| 5974.883239 |   5.742619e-03 | -0.515783 + 0.569724i
 30| 6681.980865 |   8.351410e-03 | -0.631053 + 0.397471i

Figure 3 shows the frequency response of the individual filters.
Building analysis filterbank
Building synthesizer for an analysis-synthesis delay of 0.004 seconds
The synthesizers parameters:
----------------------------
 # | delay  |       phase factor     | gain / dB

  1|      0 |  0.547900 + -0.836544i |  0.30
  2|      0 | -0.477398 + -0.878687i |  1.56
  3|      0 | -0.998794 +  0.049092i |  1.57
  4|      0 | -0.325669 +  0.945484i |  1.15
  5|      0 |  0.813638 +  0.581371i |  0.52
  6|      0 |  0.713266 + -0.700893i | -0.21
  7|      0 | -0.673924 + -0.738801i | -0.98
  8|      0 | -0.652150 +  0.758090i | -1.74
  9|      0 |  0.917335 +  0.398116i | -2.41
 10|      0 | -0.094831 + -0.995493i | -2.93
 11|      0 | -0.676236 +  0.736685i | -3.36
 12|      0 |  0.969679 + -0.244383i | -3.60
 13|      3 | -0.483470 + -0.875361i | -3.69
 14|      9 | -0.931640 + -0.363382i | -3.64
 15|     15 | -0.999885 +  0.015137i | -3.55
 16|     21 | -0.999737 +  0.022920i | -3.67
 17|     25 | -0.760047 +  0.649868i | -3.52
 18|     30 | -0.885042 +  0.465511i | -3.69
 19|     33 | -0.339377 +  0.940650i | -3.55
 20|     37 | -0.607274 +  0.794492i | -3.70
 21|     40 | -0.500187 +  0.865917i | -3.51
 22|     43 | -0.686624 +  0.727012i | -3.60
 23|     45 | -0.261163 +  0.965295i | -3.55
 24|     47 | -0.022489 +  0.999747i | -3.69
 25|     49 | -0.092279 +  0.995733i | -3.66
 26|     51 | -0.518434 +  0.855117i | -3.47
 27|     53 | -0.994152 +  0.107991i | -3.69
 28|     54 | -0.775582 +  0.631247i | -3.63
 29|     56 | -0.342105 + -0.939662i | -4.36
 30|     57 | -0.229183 + -0.973383i | -1.22

Figure 4 shows the impulse response of the analysis-synthesis
system in the time domain.

Figure 5 shows its frequency response.