This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).
Part I: This example creates a 4th order gammatone filter with a center frequency of 1000Hz and a 3dB-bandwidth of 100Hz, suitable for input signals with a sampling frequency of 10kHz.
Part II: This example program demonstrates how to create and use the gammatone filterbank within the framework of Hohmann (2002).
Part III: This Example demonstrates how to create and how to use the combined analysis-synthesis Filterbank system.
This code produces the following output:
The filter coefficient of this filter is: 0.97376 + 0.13968 Its normalization factor is : 1.4028e-07 Figure 1 shows the first 800 samples of the impulse response of a 4th order gammatone filter with a center frequency of ϨHz and a 3dB-bandwidth of dHz. Real part, imaginary part, and absolute value of the impulse response are plotted as lines 1, 2, and 3, respectively. Figure 2 shows the frequency response function of this filter in dB over frequency in Hz. Building a filterbank for 16276Hz sampling frequency. Lower cutoff frequency: 70Hz Upper cutoff frequency: 6700Hz Base frequency : 1000Hz filters per ERB : 1 filterbank contains 30 filters: # | f / Hz | normalization | coefficient 1| 73.223641 | 5.265982e-08 | 0.986867 + 0.027903i 2| 107.651956 | 8.085647e-08 | 0.984969 + 0.040957i 3| 146.004401 | 1.241101e-07 | 0.982654 + 0.055445i 4| 188.728245 | 1.904318e-07 | 0.979828 + 0.071514i 5| 236.321739 | 2.920749e-07 | 0.976374 + 0.089322i 6| 289.339925 | 4.477658e-07 | 0.972152 + 0.109040i 7| 348.401107 | 6.860992e-07 | 0.966986 + 0.130846i 8| 414.194064 | 1.050696e-06 | 0.960665 + 0.154929i 9| 487.486082 | 1.608029e-06 | 0.952929 + 0.181478i 10| 569.131901 | 2.459271e-06 | 0.943462 + 0.210687i 11| 660.083684 | 3.758199e-06 | 0.931880 + 0.242737i 12| 761.402124 | 5.738207e-06 | 0.917721 + 0.277794i 13| 874.268807 | 8.752923e-06 | 0.900427 + 0.315986i 14| 1000.000000 | 1.333716e-05 | 0.879330 + 0.357389i 15| 1140.061995 | 2.029808e-05 | 0.853641 + 0.401992i 16| 1296.088211 | 3.085102e-05 | 0.822431 + 0.449661i 17| 1469.898248 | 4.682124e-05 | 0.784622 + 0.500088i 18| 1663.519097 | 7.094204e-05 | 0.738989 + 0.552724i 19| 1879.208790 | 1.072934e-04 | 0.684168 + 0.606690i 20| 2119.482727 | 1.619433e-04 | 0.618693 + 0.660680i 21| 2387.143012 | 2.438807e-04 | 0.541066 + 0.712827i 22| 2685.311132 | 3.663608e-04 | 0.449888 + 0.760566i 23| 3017.464361 | 5.488321e-04 | 0.344054 + 0.800486i 24| 3387.476311 | 8.196695e-04 | 0.223067 + 0.828203i 25| 3799.662107 | 1.220009e-03 | 0.087477 + 0.838291i 26| 4258.828711 | 1.809067e-03 | -0.060519 + 0.824359i 27| 4770.330980 | 2.671403e-03 | -0.216318 + 0.779363i 28| 5340.134118 | 3.926697e-03 | -0.372053 + 0.696340i 29| 5974.883239 | 5.742619e-03 | -0.515783 + 0.569724i 30| 6681.980865 | 8.351410e-03 | -0.631053 + 0.397471i Figure 3 shows the frequency response of the individual filters. Building analysis filterbank Building synthesizer for an analysis-synthesis delay of 0.004 seconds The synthesizers parameters: ---------------------------- # | delay | phase factor | gain / dB 1| 0 | 0.547900 + -0.836544i | 0.30 2| 0 | -0.477398 + -0.878687i | 1.56 3| 0 | -0.998794 + 0.049092i | 1.57 4| 0 | -0.325669 + 0.945484i | 1.15 5| 0 | 0.813638 + 0.581371i | 0.52 6| 0 | 0.713266 + -0.700893i | -0.21 7| 0 | -0.673924 + -0.738801i | -0.98 8| 0 | -0.652150 + 0.758090i | -1.74 9| 0 | 0.917335 + 0.398116i | -2.41 10| 0 | -0.094831 + -0.995493i | -2.93 11| 0 | -0.676236 + 0.736685i | -3.36 12| 0 | 0.969679 + -0.244383i | -3.60 13| 3 | -0.483470 + -0.875361i | -3.69 14| 9 | -0.931640 + -0.363382i | -3.64 15| 15 | -0.999885 + 0.015137i | -3.55 16| 21 | -0.999737 + 0.022920i | -3.67 17| 25 | -0.760047 + 0.649868i | -3.52 18| 30 | -0.885042 + 0.465511i | -3.69 19| 33 | -0.339377 + 0.940650i | -3.55 20| 37 | -0.607274 + 0.794492i | -3.70 21| 40 | -0.500187 + 0.865917i | -3.51 22| 43 | -0.686624 + 0.727012i | -3.60 23| 45 | -0.261163 + 0.965295i | -3.55 24| 47 | -0.022489 + 0.999747i | -3.69 25| 49 | -0.092279 + 0.995733i | -3.66 26| 51 | -0.518434 + 0.855117i | -3.47 27| 53 | -0.994152 + 0.107991i | -3.69 28| 54 | -0.775582 + 0.631247i | -3.63 29| 56 | -0.342105 + -0.939662i | -4.36 30| 57 | -0.229183 + -0.973383i | -1.22 Figure 4 shows the impulse response of the analysis-synthesis system in the time domain. Figure 5 shows its frequency response.