function data = exp_baumgartner2017(varargin)
%EXP_BAUMGARTNER2017 - Experiments of Baumgartner et al. (2017)
% Usage: data = exp_baumgartner2017(flag)
%
% EXP_BAUMGARTNER2017(flag) reproduces figures of the study from
% Baumgartner et al. (2017).
%
% The following flags can be specified
%
% boyd2012 models experiments from Boyd et al. (2012; Fig.1, top).
% Average externalization ratings of 1 talker for NH participants
% against mix point as a function of microphone position (ITE/BTE)
% and frequency response (BB/LP). The reference condition (ref) is
% the same as ITE/BB. Error bars show SEM.
%
% hartmann1996 models experiments from Hartmann & Wittenberg (1996; Fig.7-8)
% 1st panel: Synthesis of zero-ILD signals. Only the harmonics
% from 1 to nprime had zero interaural level difference;
% harmonics above nprime retained the amplitudes of the baseline
% synthesis. Externalization scores as a function of the boundary
% harmonic number nprime. Fundamental frequency of 125 Hz.
% 2nd panel: Synthesis of signals to test the ISLD hypothesis.
% Harmonics at and below the boundary retained only the interaural
% spectral level differences of the baseline synthesis. Higher
% harmonics retained left and right baseline harmonic levels.
% Externalization scores as a function of the boundary
% frequency.
%
% hassager2016 models experiments from Hassager et al. (2016; Fig.6).
% The mean of the seven listeners perceived sound source
% location (black) as a function of the bandwidth factor
% and the corresponding model predictions (colored).
% The model predictions have been shifted slightly to the right
% for a better visual interpretation. The error bars are one
% standard error of the mean.
%
% Requirements:
% -------------
%
% 1) SOFA API v0.4.3 or higher from http://sourceforge.net/projects/sofacoustics for Matlab (in e.g. thirdparty/SOFA)
%
% 2) Data in hrtf/baumgartner2017
%
% 3) Statistics Toolbox for Matlab (for some of the figures)
%
% Examples:
% ---------
%
% To display results for Fig.1 from Boyd et al. (2012) use :
%
% exp_baumgartner2017('boyd2012');
%
% To display results for Fig.7-8 from Hartmann & Wittenberg (1996) use :
%
% exp_baumgartner2017('hartmann1996');
%
% To display results for Fig.6 from Hassager et al. (2016) use :
%
% exp_baumgartner2017('hassager2016');
%
% References:
% R. Baumgartner, P. Majdak, H. Colburn, and B. Shinn-Cunningham.
% Modeling sound externalization based on listener-specific spectral
% cues. In Acoustics â17 Boston: The 3rd Joint Meeting of the Acoustical
% Society of America and the European Acoustics Association, Boston, MA,
% Jun 2017.
%
% A. W. Boyd, W. M. Whitmer, J. J. Soraghan, and M. A. Akeroyd. Auditory
% externalization in hearing-impaired listeners: The effect of pinna cues
% and number of talkers. J. Acoust. Soc. Am., 131(3):EL268-EL274, 2012.
% [1]arXiv | [2]www: ]
%
% W. M. Hartmann and A. Wittenberg. On the externalization of sound
% images. J. Acoust. Soc. Am., 99(6):3678-88, June 1996.
%
% H. G. Hassager, F. Gran, and T. Dau. The role of spectral detail in the
% binaural transfer function on perceived externalization in a
% reverberant environment. J. Acoust. Soc. Am., 139(5):2992-3000, 2016.
% [3]arXiv | [4]www: ]
%
% References
%
% 1. http://arxiv.org/abs/%20http://dx.doi.org/10.1121/1.3687015
% 2. http://dx.doi.org/10.1121/1.3687015
% 3. http://arxiv.org/abs/http://dx.doi.org/10.1121/1.4950847
% 4. http://dx.doi.org/10.1121/1.4950847
%
%
% Url: http://amtoolbox.sourceforge.net/amt-0.9.9/doc/experiments/exp_baumgartner2017.php
% Copyright (C) 2009-2015 Piotr Majdak and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 0.9.9
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR: Robert Baumgartner, Acoustics Research Institute, Vienna, Austria
definput.import={'amt_cache'};
definput.flags.type = {'missingflag','boyd2012','hartmann1996','hassager2016'};
definput.flags.quickCheck = {'','quickCheck'};
definput.keyvals.Sintra = 2;
definput.keyvals.Sinter = 2;
[flags,kv] = ltfatarghelper({},definput,varargin);
if flags.do_missingflag
flagnames=[sprintf('%s, ',definput.flags.type{2:end-2}),...
sprintf('%s or %s',definput.flags.type{end-1},definput.flags.type{end})];
error('%s: You must specify one of the following flags: %s.',upper(mfilename),flagnames);
end
%% Hassager et al. (2016)
if flags.do_hassager2016
azi = [0,50];
flp = 6000; % lowpass filtered noise stimuli
Pext_A = data_hassager2016;
B = Pext_A.B;
fncache = ['hassager2016_Sintra',num2str(kv.Sintra*100,'%i'),'_Sinter',num2str(kv.Sinter*100,'%i')];
Pext = amt_cache('get',fncache,flags.cachemode);
if isempty(Pext)
data = data_baumgartner2017;
if flags.do_quickCheck
data = data(1:5);
end
Pext = nan(length(B),length(data),length(azi));
Pext = {Pext,Pext};
for isubj = 1:length(data)
Obj = data(isubj).Obj;
for iazi = 1:length(azi)
idazi = Obj.SourcePosition(:,1) == azi(iazi) & Obj.SourcePosition(:,2) == 0;
template = squeeze(shiftdim(Obj.Data.IR(idazi,:,:),2));
for iB = 1:length(B)
amt_disp(num2str(iB),'volatile');
if isnan(B(iB))
target = template;
else
Obj_tar = sig_hassager2016(Obj,B(iB));
target = squeeze(shiftdim(Obj_tar.Data.IR(idazi,:,:),2));
end
Pext{1}(iB,isubj,iazi) = baumgartner2017(target,template,'S',kv.Sinter,'flow',100,'fhigh',flp,'interaural'); % Obj instead of single template
Pext{2}(iB,isubj,iazi) = baumgartner2017(target,template,'S',kv.Sintra,'flow',100,'fhigh',flp,'lat',azi(iazi));
end
end
amt_disp([num2str(isubj),' of ',num2str(length(data)),' subjects completed.'],'progress')
end
if not(flags.do_quickCheck)
amt_cache('set',fncache,Pext);
end
end
%% Plot
BplotTicks = logspace(log10(0.25),log10(64),9);
BplotTicks = round(BplotTicks*100)/100;
BplotStr = ['Ref.';num2str(BplotTicks(:))];
BplotTicks = [BplotTicks(1)/2,BplotTicks];
B(1) = B(2)/2;
Ns = size(Pext{1},2);
figure
symb = {'-bs','-rd'};
for iazi = 1:length(azi)
subplot(1,2,iazi)
h(3) = plot(B,Pext_A.rating(:,iazi),'-ko');
hold on
for m = 1:2
h(m) = errorbar(B,mean(Pext{m}(:,:,iazi),2),std(Pext{m}(:,:,iazi),0,2)/sqrt(Ns),symb{m});
end
set(h,'MarkerFaceColor','w')
set(gca,'XTick',BplotTicks,'XTickLabel',BplotStr,'XScale','log')
axis([BplotTicks(1)/1.5,BplotTicks(end)*1.5,0.8,5.2])
xlabel('Bandwidth Factor [ERB]')
ylabel('Mean Externalization Rating')
title([num2str(azi(iazi)),'\circ'])
end
leg = legend({'Actual','Interaural','Monaural'},'Location','southwest');
set(leg,'Box','off')
end
%% Hartmann & Wittenberg (1996)
if flags.do_hartmann1996
exp = {'ILD','ISLD'};
nprime = [0,1,8,14,19,22,25,38];
fncache = ['hartmann1996_Sintra',num2str(kv.Sintra*100,'%i'),'_Sinter',num2str(kv.Sinter*100,'%i')];
Pext = amt_cache('get',fncache,flags.cachemode);
if isempty(Pext)
azi = -37;
data = data_baumgartner2017;
if flags.do_quickCheck
data = data(1:5);
end
Pext{1} = nan(length(data),length(nprime),length(exp));
Pext{2} = nan(length(data),length(nprime),length(exp));
for isub = 1:length(data)
Obj = data(isub).Obj;
template = sig_hartmann1996(0,'Obj',Obj,'dur',0.1);
for ee = 1:length(exp)
for nn = 1:length(nprime)
target = sig_hartmann1996(nprime(nn),'Obj',Obj,'dur',0.1,exp{ee});
Pext{1}(isub,nn,ee) = baumgartner2017(target,template,'c1',3,'c2',0,'S',kv.Sinter,'flow',100,'fhigh',6000,'interaural');
Pext{2}(isub,nn,ee) = baumgartner2017(target,template,'c1',3,'c2',0,'S',kv.Sintra,'flow',100,'fhigh',6000,'lat',azi);
end
end
amt_disp([num2str(isub),' of ',num2str(length(data)),' subjects completed.'],'progress')
end
if not(flags.do_quickCheck)
amt_cache('set',fncache,Pext);
end
end
Ns = size(Pext{1},1);
figure
for ee = 1:length(exp)
act = data_hartmann1996(exp{ee});
subplot(1,2,ee)
h(1) = plot(act.avg.nprime,act.avg.Escore,'-ko');
hold on
h(2) = errorbar(nprime,mean(Pext{1}(:,:,ee)),std(Pext{1}(:,:,ee))/sqrt(Ns),'-bs');
h(3) = errorbar(nprime,mean(Pext{2}(:,:,ee)),std(Pext{2}(:,:,ee))/sqrt(Ns),'-rd');
set(h,'MarkerFaceColor','w')
if ee == 1
xlabel('n\prime (Highest harmonic with ILD = 0)')
else
xlabel('n\prime (Highest harmonic with altered amplitudes)')
end
ylabel('Externalization score')
title(exp{ee})
axis([0,39,-0.1,3.1])
if ee == 2
leg = legend('Actual','Interaural cues','Monaural cues','Location','southwest');
set(leg,'Box','off')
end
end
end
%% Boyd et al. (2012)
if flags.do_boyd2012
flp = [nan,6500]; % Low-pass cut-off frequency
ele = 0;
azi = -30;
data = data_boyd2012;
fncache = ['boyd2012_Sintra',num2str(kv.Sintra*100,'%i'),'_Sinter',num2str(kv.Sinter*100,'%i')];
E = amt_cache('get',fncache,flags.cachemode);
if isempty(E)
Eboyd = cat(3,[data.ITE.BB(:),data.BTE.BB(:)],[data.ITE.LP(:),data.BTE.LP(:)]);
mix = data.mix/100;
%%
sig = noise(50e3,1,'pink');
BTE = data_baumgartner2017('BTE');
subjects = data_baumgartner2017;
if flags.do_quickCheck
subjects = subjects(1:5);
end
fs = subjects(1).Obj.Data.SamplingRate;
Ebaum = nan([size(Eboyd),length(subjects)]);
Ehass = Ebaum;
for isub = 1:length(subjects)
ITE = subjects(isub).Obj;
%% Unmixed stimuli
stim{1} = SOFAspat(sig,ITE,azi,ele);
stim{2} = SOFAspat(sig,BTE.Obj,azi,ele);
template = stim{1};
%% Model simulations
target = cell(length(mix),2,2);
fhigh = [16e3,flp(2)];
for c = 1:2
for lp = 1:2
for m = 1:length(mix)
target{m,c,lp} = sig_boyd2012(stim{c},sig,mix(m),flp(lp),fs);
% % Description in paper is ambiguous about whether broadband ILDs were
% % adjusted to the template:
% temSPL = dbspl(template);
% for ch = 1:2
% target{m,c,lp}(:,ch) = setdbspl(target{m,c,lp}(:,ch),temSPL(ch));
% end
Ebaum(m,c,lp,isub) = baumgartner2017( target{m,c,lp},template,...
'S',kv.Sintra,'flow',100,'c1',100,'c2',0,'fhigh',fhigh(1),'lat',azi);
Ehass(m,c,lp,isub) = baumgartner2017( target{m,c,lp},template,...
'S',kv.Sinter,'flow',100,'c1',100,'c2',0 ,'fhigh',fhigh(1),'interaural');
end
end
end
amt_disp([num2str(isub),' of ',num2str(length(subjects)),' subjects completed.'],'progress')
end
seEbaum = std(Ebaum,0,4);
Ebaum = mean(Ebaum,4);
seEhass = std(Ehass,0,4);
Ehass = mean(Ehass,4);
seEboyd = 0*seEhass;
E.m = {Eboyd,Ehass,Ebaum};
E.se = {seEboyd,seEhass,seEbaum};
if not(flags.do_quickCheck)
amt_cache('set',fncache,E);
end
end
%% Plot
figure
dataLbl = {'Actual','Interaural','Monaural'};
symb = {'ko','bs','rd'};
condLbl = {'ITE / BB','BTE / BB','ITE / LP','BTE / LP'};
hax = tight_subplot(1,4,0,[.15,.1],[.1,.05]);
for cc = 1:length(condLbl)
axes(hax(cc))
for ee = 1:length(E.m)
h = errorbar(data.mix,E.m{ee}(:,cc),E.se{ee}(:,cc),['-',symb{ee}]);
set(h,'MarkerFaceColor','w')
hold on
end
set(gca,'XDir','reverse')
xlabel('Mix (%)')
if cc == 1
ylabel('Externalization score')
else
set(gca,'YTickLabel',[])
end
title(condLbl{cc})
axis([-20,120,-5,105])
if cc == 4
leg = legend(dataLbl);
set(leg,'Box','off','Location','north')
end
end
% set(leg,'Location','eastoutside','Position',get(leg,'Position')+[.1,.2,0,0])
end
%%%%%%%%%% INTERNAL FUNCTIONS FOR VISUALIZATION %%%%%%%%%%
function ha = tight_subplot(Nh, Nw, gap, marg_h, marg_w)
% tight_subplot creates "subplot" axes with adjustable gaps and margins
%
% ha = tight_subplot(Nh, Nw, gap, marg_h, marg_w)
%
% in: Nh number of axes in hight (vertical direction)
% Nw number of axes in width (horizontaldirection)
% gap gaps between the axes in normalized units (0...1)
% or [gap_h gap_w] for different gaps in height and width
% marg_h margins in height in normalized units (0...1)
% or [lower upper] for different lower and upper margins
% marg_w margins in width in normalized units (0...1)
% or [left right] for different left and right margins
%
% out: ha array of handles of the axes objects
% starting from upper left corner, going row-wise as in
% going row-wise as in
%
% Example: ha = tight_subplot(3,2,[.01 .03],[.1 .1],[.1 .1])
% for ii = 1:6; axes(ha(ii)); plot(randn(10,ii)); end
% set(ha(1:4),'XTickLabel',''); set(ha,'YTickLabel','')
% Pekka Kumpulainen 20.6.2010 @tut.fi
% Tampere University of Technology / Automation Science and Engineering
if nargin<3; gap = .02; end
if nargin<4 || isempty(marg_h); marg_h = .05; end
if nargin<5; marg_w = .05; end
if numel(gap)==1;
gap = [gap gap];
end
if numel(marg_w)==1;
marg_w = [marg_w marg_w];
end
if numel(marg_h)==1;
marg_h = [marg_h marg_h];
end
axh = (1-sum(marg_h)-(Nh-1)*gap(1))/Nh;
axw = (1-sum(marg_w)-(Nw-1)*gap(2))/Nw;
py = 1-marg_h(2)-axh;
ha = zeros(Nh*Nw,1);
ii = 0;
for ih = 1:Nh
px = marg_w(1);
for ix = 1:Nw
ii = ii+1;
ha(ii) = axes('Units','normalized', ...
'Position',[px py axw axh], ...
'XTickLabel','', ...
'YTickLabel','');
px = px+axw+gap(2);
end
py = py-axh-gap(1);
end
end
end