THE AUDITORY MODELING TOOLBOX

This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).

View the help

Go to function

EXP_KELVASA2015 - Figures from Kelvasa and Dietz (2015)

Program code:

function [dataOut] = exp_kelvasa2015(varargin)
%EXP_KELVASA2015 Figures from Kelvasa and Dietz (2015)
%
%   EXP_KELVASA2015(fig) computes data to produce corresponding figure
%   number from the Kelvasa and Dietz 2015 paper.
%
%   Usage:
%     [dataOut] = exp_kelvasa2015('fig8a')
%     [dataOut] = exp_kelvasa2015('fig8a','identifier','BTE','HRTFchannels',[3,4]);
%     [dataOut] = exp_kelvasa2015('fig8a',varargin);
%
%   The following flags can be specified;
%
%     'redo'    Recomputes data for specified figure
%
%     'plot'    Plot the output of the experiment. This is the default.
%
%     'noplot'  Don't plot, only return data.
%
%     'fig5'    Reproduce Fig. 5.
%
%     'fig6'    Reproduce Fig. 6.
%
%     'fig8a'    Reproduce Fig. 8a.
%
%     'fig8b'    Reproduce Fig. 8b.
%
%     'fig9a'    Reproduce Fig. 9a.
%
%     'fig10'    Reproduce Fig. 10.
%
%     'fig12'    Reproduce Fig. 12.
%
%   Examples:
%   ---------
%
%   To display Fig. 5 use :
%
%     exp_kelvasa2015('fig5')
%
%   To display Fig. 6 use :
%
%     exp_kelvasa2015('fig6')
%
%   To display Fig. 8a use :
%
%     exp_kelvasa2015('fig8a')
%
%   To display Fig. 8b use :
%
%     exp_kelvasa2015('fig8b')
%
%   To display Fig. 9a use :
%
%     exp_kelvasa2015('fig9a')
%
%   To display Fig. 10 use :
%
%     exp_kelvasa2015('fig10')
%
%   To display Fig. 12 use :
%
%     exp_kelvasa2015('fig12')
%
%   References:
%     D. Kelvasa and M. Dietz. Auditory model-based sound direction
%     estimation with bilateral cochlear implants. Trends in Hearing,
%     19:2331216515616378, 2015.
%     
%
%   Url: http://amtoolbox.sourceforge.net/amt-0.9.9/doc/experiments/exp_kelvasa2015.php

% Copyright (C) 2009-2015 Piotr Majdak and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 0.9.9
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program.  If not, see <http://www.gnu.org/licenses/>.

%   Authors:
%            Daryl Kelvasa (daryl.kelvasa@uni-oldenburg.de) 2016
%            Mathias Dietz (mdietz@uwo.ca) 2016
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Retrieve and compute model paramters
    % Set flags

      definput.flags.type = {'missingflag','fig5','fig6','fig7','fig8a',...
                                           'fig8b','fig9a','fig10','fig12'};
      definput.flags.debugging = {'no_debug','debug'};
      definput.flags.plot = {'plot','no_plot'};
      definput.flags.plot_stage_fig = {'no_plot_stage_fig','plot_stage_fig'};

    % import default arguments from other functions
    definput.import={'kelvasa2015','amt_cache'};

    [flags,kv]  = ltfatarghelper({},definput,varargin);

    if flags.do_missingflag
           flagnames=[sprintf('%s, ',definput.flags.type{2:end-2}),...
           sprintf('%s or %s',definput.flags.type{end-1},...
           definput.flags.type{end})];
           error('%s: You must specify one of the following flags: %s.',...
                 upper(mfilename),flagnames);
    end


%% Load HRTF data
HRTF = SOFAload(fullfile(SOFAdbPath,'kelvasa2015',...
                    kv.HRTFfile));
[~,ind_elev] = min(abs(HRTF.SourcePosition(:,2)-kv.HRTFelevation));
[~,ind_dist] = min(abs(HRTF.SourcePosition(:,3)-kv.HRTFsourceDistance));
ind = find(sum([HRTF.SourcePosition(:,2) == HRTF.SourcePosition(ind_elev,2),...
                HRTF.SourcePosition(:,3) == HRTF.SourcePosition(ind_dist,3)],2)...
                ==2);
HRTFnew.SourcePosition = HRTF.SourcePosition(ind,:);
HRTFnew.Data.IR = HRTF.Data.IR(ind,kv.HRTFchannels,:);
HRTFnew.Data.SamplingRate = HRTF.Data.SamplingRate;
HRTF = HRTFnew;

%% Set dB SPL offset
ltfatsetdefaults('dbspl','dboffset',71.778);



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Figure 5
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if flags.do_fig5

    %Needed parameters
    savename = ['Figure_5_data_',kv.identifier];

    %Check for preprocessed calibration data
    [dataOut] = amt_cache('get', savename, flags.cachemode);
    if isempty(dataOut)

    signals = {'SSN.wav','FrozenSpeech.wav','PinkNoise.wav','WhiteNoise.wav'};
    levels = 35:70;
    elecPos = [3 4; 7 8; 11 12; 15 16; 19 20];

    %Main loop over all stimuli
    n = 1; numLoops = numel(levels)*numel(signals)*2;
    H = waitbar(0,'Computing data for Figure 5');
    for ind = 1 : 8

        [signal, fs] = amt_load('kelvasa2015',signals{ceil(ind./2)});
        signal = signal(1:6*fs,:);
        signal = resample(signal,kv.FS_ACE,fs);

        if  ismember(ind,2:4:8)
            %HRTF filter signal and choose microphone channels
            [signal] = HRTFfilter(signal,0,kv,HRTF);
        end

            spikeRatePerBinPerLevel = zeros(kv.numBin,numel(levels));
            currentPerBinPerLevel = zeros(kv.numBin,numel(levels));

        for level = 1 : numel(levels)
            tic

            temp = signal(:,1)./rms(signal(:,1));
            scalor = setdbspl(levels(level));
            scalor = rms(temp.*scalor)/rms(signal(:,1));

            signal = signal.*scalor;

            sigLengthSec = (size(signal,1)/fs);

            [electrodogram, vTime] = ...
                                kelvasa2015_ciprocessing(signal,...
                                kv.FS_ACE,'argimport',flags,kv);

            [APvec] = ...
                                kelvasa2015_anprocessing(electrodogram,...
                                vTime,'argimport',flags,kv);

           [~,spikeRatePerBinPerLevelT] = ...
                                kelvasa2015_anbinning(APvec,...
                                sigLengthSec,'argimport',flags,kv);


           spikeRatePerBinPerLevel(:,level) = ...
                            mean(spikeRatePerBinPerLevelT,2);
           currentPerBinPerLevel(:,level) =  ...
                            (sum(electrodogram(elecPos(:,2),:),2) + ...
                             sum(electrodogram(elecPos(:,1),:),2)).* ...
                                25e-6.*1e-6.*1e9;

            a = toc; timeLeft = round((a*(numLoops - n))/60);
            H = waitbar(n/numLoops,H,['Computing Figure 5. Time left (min):',...
                            num2str(timeLeft)]); n = n+1;
        end

            dataOut(ind).spikeRatePerBinPerLevel = spikeRatePerBinPerLevel;
            dataOut(ind).currentPerBinPerLevel = currentPerBinPerLevel;

    end

    delete(H)
    amt_cache('set',savename,dataOut);
    end
    if flags.do_plot; plot_kelvasa2015(dataOut,'argimport',flags,kv); end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Figure 6
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if flags.do_fig6

        %Needed parameters
        azis = 0:5:90;
        levels = [45,55,65];
        savename = ['Figure_6_data_',kv.identifier];

        %Check for preprocessed calibration data
        [dataOut] = amt_cache('get', savename, flags.cachemode);
        if isempty(dataOut)

        signalName = 'SSN.wav'; 
        [signal, fs] = amt_load('kelvasa2015',signalName);
        signal = signal(1:6*fs,:);
        signal = resample(signal,kv.FS_ACE,fs);

        SpkDiffPerBin = zeros(numel(azis),kv.numBin);
        SpkSumPerBin = zeros(numel(azis),kv.numBin);

        %Main loop over all levels
        n = 1; numLoops = numel(levels)*numel(azis);
        H = waitbar(0,'Computing data for Figure 6');

        for level = 1 : numel(levels)
            for ang = 1 : numel(azis)
                tic

                %HRTF filter signal and choose microphone channels
                [HRIR] = HRTFfilter(signal,azis(ang),kv,HRTF);

                if azis(ang) == 0
                      temp = HRIR(:,1)./rms(HRIR(:,1));
                      scalor = setdbspl(levels(level));
                      scalor = rms(temp.*scalor)/rms(HRIR(:,1));
                end

                HRIR = HRIR .* scalor;
                sigLengthSec = (size(HRIR,1)/fs);

                spikeRatePerBin = zeros(kv.numBin,2);

                for chan = 1 : 2

                     singChanSig = HRIR(:,chan);

                     [electrodogram, vTime] = ...
                                    kelvasa2015_ciprocessing(singChanSig,...
                                    kv.FS_ACE,'argimport',flags,kv);

                      [APvec] = ...
                                    kelvasa2015_anprocessing(electrodogram,...
                                    vTime,'argimport',flags,kv);

                      [~,spikeRatePerBinT] = ...
                                    kelvasa2015_anbinning(APvec,...
                                    sigLengthSec,'argimport',flags,kv);

                      spikeRatePerBin(:,chan) =  mean(spikeRatePerBinT,2);
                end

                SpkDiffPerBin(ang,:) = spikeRatePerBin(:,2)- spikeRatePerBin(:,1);
                SpkSumPerBin(ang,:) = spikeRatePerBin(:,2) + spikeRatePerBin(:,1);

                a = toc; timeLeft = round((a*(numLoops - n))/60);
                H = waitbar(n/numLoops,H,...
                      ['Computing Figure 6. Time left (min):',...
                                num2str(timeLeft)]); n = n+1;
            end
            dataOut(level).signalName = signalName;
            dataOut(level).levelDB = levels(level);
            dataOut(level).SpkDiffPerBin = SpkDiffPerBin;
            dataOut(level).SpkSumPerBin = SpkSumPerBin;
        end
         delete(H)
         amt_cache('set',savename,dataOut);
        end
        dataOut(1).azis=azis;
        if flags.do_plot; plot_kelvasa2015(dataOut,'argimport',flags,kv); end
end


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Figure 7
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if flags.do_fig7

        %Needed parameters
        azis = 0:5:90;
        level = 65;
        savename = ['Figure_7_data_',kv.identifier];

        %Check for preprocessed calibration data
        [dataOut] = amt_cache('get', savename, flags.cachemode);
        if isempty(dataOut)

        signalName = {'SSN.wav','PinkNoise.wav'};

        %Main loop over all angles and signal
        n = 1; numLoops = 2*numel(azis);
        H = waitbar(0,'Computing data for Figure 7');
        for sig = 1 : 2

        [signal, fs] = amt_load('kelvasa2015',signalName{sig});
        signal = signal(1:6*fs,:);
        signal = resample(signal,kv.FS_ACE,fs);

        SpkDiffPerBin = zeros(numel(azis),kv.numBin);
        SpkSumPerBin = zeros(numel(azis),kv.numBin);

        for ang = 1 : numel(azis)
            tic

            %HRTF filter signal and choose microphone channels
            [HRIR] = HRTFfilter(signal,azis(ang),kv,HRTF);

            if azis(ang) == 0
                  temp = HRIR(:,1)./rms(HRIR(:,1));
                  scalor = setdbspl(level);
                  scalor = rms(temp.*scalor)/rms(HRIR(:,1));
            end

            HRIR = HRIR .* scalor;
            sigLengthSec = (size(HRIR,1)/fs);

            spikeRatePerBin = zeros(kv.numBin,2);

            for chan = 1 : 2

                 singChanSig = HRIR(:,chan);

                 [electrodogram, vTime] = ...
                                kelvasa2015_ciprocessing(singChanSig,...
                                kv.FS_ACE,'argimport',flags,kv);

                  [APvec] = ...
                                kelvasa2015_anprocessing(electrodogram,...
                                vTime,'argimport',flags,kv);

                  [~,spikeRatePerBinT] = ...
                                kelvasa2015_anbinning(APvec,...
                                sigLengthSec,'argimport',flags,kv);

                  spikeRatePerBin(:,chan) =  mean(spikeRatePerBinT,2);
            end

            SpkDiffPerBin(ang,:) = spikeRatePerBin(:,2)- spikeRatePerBin(:,1);
            SpkSumPerBin(ang,:) = spikeRatePerBin(:,2) + spikeRatePerBin(:,1);

            a = toc; timeLeft = round((a*(numLoops - n))/60);
            H = waitbar(n/numLoops,H,...
                  ['Computing Figure 7. Time left (min):',...
                            num2str(timeLeft)]); n = n+1;
        end
            dataOut(sig).signalName = signalName{sig};
            dataOut(sig).levelDB = (level);
            dataOut(sig).SpkDiffPerBin = SpkDiffPerBin;
            dataOut(sig).SpkSumPerBin = SpkSumPerBin;
        end
        %Save data
         delete(H)
         amt_cache('set',savename,dataOut);
        end
        if flags.do_plot; plot_kelvasa2015(dataOut,'argimport',flags,kv); end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Figure 8a
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if flags.do_fig8a

    %Parameters
       savename = ['Figure_8a_data_',kv.identifier];
       %Check for preprocessed calibration data
        [dataOut] = amt_cache('get', savename, flags.cachemode);
        if isempty(dataOut); clear dataOut

       levels = [45,55,65];
       signalName = 'SSN.wav';
       [signal fs] = amt_load('kelvasa2015',signalName);
       signal = signal(1:6*fs,:);
       signal = resample(signal,kv.FS_ACE,fs);
       kv.AziCrvfitRange =  45;
       kv.localizationModel =  'RateLevel';

      %Run model
       H = waitbar(0,'Computing data for fig8a');
       for ind = 1 : numel(levels)
            tic
            dataOut(ind) = groupPredictions(signal,levels(ind),kv,flags,HRTF);

            a = toc; timeLeft = round((a*(3 - ind))/60);
            H = waitbar(ind/3,H,...
                  ['Computing Figure 8a. Time left (min):',...
                            num2str(timeLeft)]);
       end

       %Save data
       delete(H)
       amt_cache('set',savename,dataOut);
       end
       if flags.do_plot; plot_kelvasa2015(dataOut,'argimport',flags,kv); end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Figure 8b
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if flags.do_fig8b
       %Parameters
       savename = ['Figure_8b_data_',kv.identifier];

       %Check for preprocessed calibration data
        [dataOut] = amt_cache('get', savename, flags.cachemode);
        if isempty(dataOut); clear dataOut

       levels = [45,55,65];
       signalName = 'SSN.wav';
       [signal fs] = amt_load('kelvasa2015',signalName);
       signal = signal(1:6*fs,:);
       signal = resample(signal,kv.FS_ACE,fs);
       kv.AziCrvfitRange =  45;
       kv.localizationModel = 'ResponseDifferenceAN';

       %Run model
       H = waitbar(0,'Computing data for fig8b');
       for ind = 1 : numel(levels)
            tic
            %Run model
            [dataOut(ind)] = groupPredictions(signal,levels(ind),kv,flags,HRTF);

            a = toc; timeLeft = round((a*(3 - ind))/60);
            H = waitbar(ind/3,H,...
                  ['Computing Figure 8b. Time left (min):',...
                            num2str(timeLeft)]);
       end

       delete(H)

       %Save data
       amt_cache('set',savename,dataOut);
       end
       if flags.do_plot; plot_kelvasa2015(dataOut,'argimport',flags,kv); end

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Figure 9a
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if flags.do_fig9a
       %Paramters
       savename = ['Figure_9a_data_',kv.identifier];

       %Check for preprocessed calibration data
        [dataOut] = amt_cache('get', savename, flags.cachemode);
        if isempty(dataOut); clear dataOut

       levels = [45,55,65];
       signalName = 'SSN.wav';
       [signal fs] = amt_load('kelvasa2015',signalName);
       signal = signal(1:6*fs,:);
       signal = resample(signal,kv.FS_ACE,fs);
       kv.AziCrvfitRange =  90;
       kv.localizationModel = 'ResponseDifferenceAN';


       %Run model
       H = waitbar(0,'Computing data for fig9a');
       for ind = 1 : numel(levels)
           tic

            %Run Model
            [dataOut(ind)] = groupPredictions(signal,levels(ind),kv,flags,HRTF);

            a = toc; timeLeft = round((a*(3 - ind))/60);
            H = waitbar(ind/3,H,...
                  ['Computing Figure 9a. Time left (min):',...
                            num2str(timeLeft)]);
       end

       %Save data
       delete(H)
       amt_cache('set',savename,dataOut);
       end
       if flags.do_plot; plot_kelvasa2015(dataOut,'argimport',flags,kv); end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Figure 10
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if flags.do_fig10

       %Parameters
       savename = ['Figure_10_data_',kv.identifier];

       %Check for preprocessed calibration data
        [dataOut] = amt_cache('get', savename, flags.cachemode);
        if isempty(dataOut); clear dataOut

       level = 55;
       signalName = {'MixedSpeech.wav','FrozenSpeech.wav'};
       localizationModel = {'MaxLikelihood','ResponseDifferenceAN'};
       kv.AziCrvfitRange =  90;

       %Run model
       n = 1; H = waitbar(0,'Computing data for fig10');
       for model = 1 : 2
           tic
           if model == 1;
               kv.localizationModelCalibWav = 'MixedSpeech.wav';end
               kv.localizationModel = localizationModel{model};
           for sig = 1 : 2
               [signal fs] = amt_load('kelvasa2015',signalName{sig});
                signal = resample(signal,kv.FS_ACE,fs);
                [dataOut(n)] = groupPredictions(signal,level,kv,flags,HRTF);

                a = toc; timeLeft = round((a*(4 - n))/60);
                H = waitbar(n/4,H,...
                  ['Computing Figure 10. Time left (min):',...
                            num2str(timeLeft)]); n = n+1;
           end

       end

       delete(H)
       amt_cache('set',savename,dataOut);
       end
       if flags.do_plot; plot_kelvasa2015(dataOut,'argimport',flags,kv); end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Figure 12
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if flags.do_fig12

       %Parameters
       savename = ['Figure_12_data_',kv.identifier];
       %Check for preprocessed calibration data
        [dataOut] = amt_cache('get', savename, flags.cachemode);
        if isempty(dataOut); clear dataOut

       level = 55;
       signalName = 'SSN.wav';
       [signal fs] = amt_load('kelvasa2015',signalName);
       signal = signal(1:6*fs,:);
       signal = resample(signal,kv.FS_ACE,fs);
       Desired_SNR_dB = 5;
       kv.localizationModel = 'ResponseDifferenceAN';
       kv.AziCrvfitRange =  90;

        %Create 360� noise interferer
        azis = -180:5:175;
        [noise fs] = amt_load('kelvasa2015','PinkNoise.wav');
        noise = resample(noise,kv.FS_ACE,fs);
        noise = noise(1:numel(signal));

        for ang = 1:numel(azis)
            %HRTF filter signal and choose microphone channels
            [HRIR] = HRTFfilter(noise,azis(ang),kv,HRTF);
            noiseL(:,ang) = HRIR(:,1);
            noiseR(:,ang) = HRIR(:,2);
        end

        %Adjust signal to desired level. Referenced to 0� azi
           rmsSig = rms(mean(HRTFfilter(signal,0,kv,HRTF),2));
           rmsNoise = rms(mean([sum(noiseL,2),sum(noiseR,2)],2));

            K = (rmsSig/rmsNoise)*10^(-Desired_SNR_dB/20);  % Scale factor
            noise = [sum(noiseL,2),sum(noiseR,2)].*K;

        %Run Model on signals
        H = waitbar(0,'Computing data for fig12');
        for ind = 1 : 2

            tic

            if ind == 1
                [dataOut(ind)] = groupPredictions(signal,level,kv,flags,HRTF);

            else
                [dataOut(ind)] = groupPredictions(signal,level,kv,flags,...
                                                   HRTF,noise);
            end

            a = toc; timeLeft = round((a*(2 - ind))/60);
            H = waitbar(ind/2,H,...
                  ['Computing Figure 12. Time left (min):',...
                            num2str(timeLeft)]);
        end
        delete(H)

       %Save data
       amt_cache('set',savename,dataOut);
       end
       if flags.do_plot; plot_kelvasa2015(dataOut,'argimport',flags,kv); end
end
end

%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [dataOut] = groupPredictions(signal,level,kv,flags,HRTF,varargin)

           azis = 0:5:90;
           groupedBinPredictions{numel(kv.binPos)} = [];
           groupedWeightedPrediction= [];

       for ang = 1 : numel(azis)

            %HRTF filter signal and choose microphone channels
            [HRIR] = HRTFfilter(signal,azis(ang),kv,HRTF);

            %Adjust signal to desired level. Referenced to 0� azi
            if azis(ang) == 0
                  temp = HRIR(:,1)./rms(HRIR(:,1));
                  scalor = setdbspl(level);
                  scalor = rms(temp.*scalor)/rms(HRIR(:,1));
            end
            HRIR = HRIR .* scalor;

            %If 360� interferer is to be added
            if ~isempty(varargin)
                noise = varargin{1}.*scalor;
                HRIR = HRIR + noise;

            end

            %Run HRTF filtered two channel signal through models
            [results] = kelvasa2015(HRIR,kv.FS_ACE,'argimport',flags,kv);

            %Bin azimuthal predictions over all target angles
            rangeAzis = [-10:5:90];
            if ~isempty(results.ANbinPredictions)
            for bin = 1 : numel(kv.binPos)
                data = results.ANbinPredictions(bin,:);
                [counts ind] = histc(data,rangeAzis);
                groupedPredictionsT = unique(rangeAzis(ind));
                countsT = counts(counts~=0);

                newInd  = [size(groupedBinPredictions{bin},2) + 1 : ...
                           size(groupedBinPredictions{bin},2) + ...
                                numel(groupedPredictionsT)];
                groupedBinPredictions{bin}(1,newInd) = groupedPredictionsT;
                groupedBinPredictions{bin}(2,newInd) = countsT;
                groupedBinPredictions {bin}(3,newInd) = ...
                                    repmat(azis(ang),1,numel(newInd));
            end;end

                data = results.weightedPredictions;
                [counts ind] = histc(data,rangeAzis);
                groupedPredictionsT = unique(rangeAzis(ind));
                countsT = counts(counts~=0);

                newInd  = (size(groupedWeightedPrediction,2) + 1) : ...
                          (size(groupedWeightedPrediction,2) + ...
                            numel(groupedPredictionsT));
                groupedWeightedPrediction(1,newInd) = groupedPredictionsT;
                groupedWeightedPrediction(2,newInd) = countsT;
                groupedWeightedPrediction(3,newInd) = ...
                                    repmat(azis(ang),1,numel(newInd));

        end

            dataOut.groupedBinPredictions = groupedBinPredictions;
            dataOut.groupedWeightedPrediction = groupedWeightedPrediction;
            groupedBinPredictions = [];

end

%%
function [outsig] = HRTFfilter(insig,ang,kv,HRTF)

            [~,ind_ang] = min(abs(HRTF.SourcePosition(:,1)-ang));

            HRIR = resample(squeeze(HRTF.Data.IR(ind_ang,:,:))',...
                    kv.FS_ACE,HRTF.Data.SamplingRate);

            %Filter signal with HRTF frequency domain
            HRTFchan1 = ifft(fft(insig).*fft(HRIR(:,1),numel(insig)));
            HRTFchan2 = ifft(fft(insig).*fft(HRIR(:,2),numel(insig)));
            outsig = [HRTFchan1,HRTFchan2];
end