This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).
function [out, par] = emuexp(command,par,varargin)
%emuexp Emulates psychoacoustic experiments
% Usage: par = emuexp(command,par);
% [out,par] = emuexp('run',par);
% [out, par] = emuexp('run',par,'plot');
%
% Input parameters:
% command : One of the following commands. 'expinit' intializes the
% general experiment parameters. 'signalinit' intializes
% the signal generator creating model inputs. 'modelinit'
% intializes model parameters. 'decisioninit' intializes
% the parameters of the decision stage in the experiment.
% Finally, 'run' runs the experiment and lets the model decide.
% par : Structure of the experimental parameters used by EMUEXP.
% Set to [] on the first call (when par is not set up yet).
%
% Output parameters:
% par : Structure containing all parameters
% out : Vector with the experiment output. out(:,1) is the average threshold of the
% experimental variable. out(:,2) is the standard deviation of the variable
% across all runs. out(:,3:end) provides the individual experimental variables
% used in each trial.
%
% par = EMUEXP(init_command,par) initializes the various parts of the
% psychoacoustic experiment to be emulated depending on init_command.
%
% out = EMUEXP('run',par) runs the experiment defined
% by the structure par and outputs the experimental result in out.
%
% [out, par] = EMUEXP('run',par) runs the experiment and outputs
% more details on the experiment parameters in par.
%
% [out, par] = EMUEXP('run',par,'plot') runs the experiment and
% plots the experiment progress.
%
% Initialization
% --------------
%
% Experiment
% *********
%
% par=EMUEXP('expinit',[],exp) initilizes the experiment wiht key-value pairs provided
% in a cell array exp. The following pairs are required:
%
% 'intnum',intnum number of intervals in a trial,
% e.g. 3 sets up a 3-afc experiment.
%
% 'rule',down_up vector with down-up-rule
% e.g. [2 1] sets up a 2-down, 1-up experiment.
%
% 'expvarstart',expvarstart step size of the experimental variable at the
% beginning of the experiment
%
% 'expvarsteprule',factor_turns vector with a factor and number of turn arounds.
% The factor affects the step size of the experimental
% variable after the number of turn arounds, e.g. [0.5 2]
% multiplies the stepsize by 0.5 after two turn arounds.
%
% 'stepmin',min_threshturn vector with minimal step size and number of turn arounds
% after reaching that minimal step size for the threshold
% calculation. E.g. [1 8] means that after reaching the
% step size 1, the experiment will continue for
% another 8 reversals before terminating.
%
% Signal generator
% ***************
%
% par=EMUEXP('signalinit',par,sig) intializes the signal generator creating
% signals for the model with key-value pairs provided in the cell array sig. The signal
% generator is called with those parameters in each trial of the experiment.
% Up to 15 input parameters are supported. One of inputs must be 'inttyp': In each
% experimental interval, this input will be replaced by 'target' or 'reference'
% depending on the interval type. One of the inputs must be 'expvar': In each trial,
% this input will be replaced by the value of the experimental variable. The
% following pairs are required:
%
% 'name',name string which defines the name of the signal
% generation
%
% 'inputX',inputX input parameter X needed for the signal generator
%
% Model called in each interval
% ****************************
%
% par=EMUEXP('modelinit',par,mod) initializes the model called in each interval with
% the key-value pairs provided in mod. Up to 10 input parameters are supported.
% One of the inputs must contain the keyword 'expsignal'.
% This keyword is replaced in the 'run' routine with the output of
% the signal generation function:
%
% 'name',name string which defines the name of the model
% function
%
% 'inputX',intputX input parameter X needed by the model
%
% 'outputs',outputs indicies of used model outputs for the decision
% e.g. [1 2 6]: output 1,2 and 6 used
%
% Decision stage called in each trial
% **********************************
%
% par=EMUEXP('decisioninit',par,dec) initializes the decision stage of the experiment
% with key-value pairs provided in dec. Up to 10 input parameters are supported.
% All inputs containing the keyword 'modelout' are
% replaced with the outputs of the model function during an
% experimental run. Therefore the number of inputs with the keyword
% 'modelout' must be equal to number of 'outputs' defined in
% 'modelinit'. An output of the modelfunction contains a cell with an
% entry for each interval. E.g. param1{1} contains the first output of
% the model function of the first interval and param3{2} contains the
% third output of the modelfunction of the second interval. Therefore the
% decision function must be implemented so that the inputs of the decision
% function are cells with entries for each interval.
% Following parameters are required:
%
% 'name',name name of the decision fuction
% 'inputX',intputX input parameter X needed by the decision function
%
% Running the experiment
% ----------------------
%
% After the initialization, the experiment can be started by
% out = EMUEXP('run',par);. The threshold will be in out.
%
% See also: exp_breebaart2001, demo_breebaart2001
%
% Url: http://amtoolbox.sourceforge.net/amt-0.9.9/doc/general/emuexp.php
% Copyright (C) 2009-2015 Piotr Majdak and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 0.9.9
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR: Martina Kreuzbichler
% turn warning off
warning('off','MATLAB:nargchk:deprecated')
switch command
case 'expinit'
definput.keyvals.intnum = [];
definput.keyvals.rule = [];
definput.keyvals.expvarstepstart = [];
definput.keyvals.expvarsteprule = [];
definput.keyvals.stepmin = [];
definput.keyvals.expvarstart = [];
definput.keyvals.interface = 'AMT';
definput.keyvals.fs = [];
definput.keyvals.directory = [];
if iscell(varargin{1}) && nargin == 3
[~,kvexp]=ltfatarghelper({},definput,varargin{:});
else
[~,kvexp]=ltfatarghelper({},definput,varargin);
end
% out = setstructfields(kvexp, par);
out = par;
out.exp = kvexp;
case 'modelinit'
definput.keyvals.name=[];
definput.keyvals.input1 = [];
definput.keyvals.input2 = [];
definput.keyvals.input3 = [];
definput.keyvals.input4 = [];
definput.keyvals.input5 = [];
definput.keyvals.input6 = [];
definput.keyvals.input7 = [];
definput.keyvals.input8 = [];
definput.keyvals.input9 = [];
definput.keyvals.input10 = [];
definput.keyvals.outputs = [];
if iscell(varargin{1}) && nargin == 3
[~,kvmodel]=ltfatarghelper({},definput,varargin{:});
else
[~,kvmodel]=ltfatarghelper({},definput,varargin);
end
% check what outputs of model are needed
outputnumber = nargout(kvmodel.name);
callmodelstring = [];
for outputcounter = 1:outputnumber
if any(kvmodel.outputs==outputcounter)
modelstring = sprintf('modelout.par%i',outputcounter);
if isempty(callmodelstring)
callmodelstring = ['[' modelstring '{interval_num}'];
else
callmodelstring = [callmodelstring ',' modelstring '{interval_num}'];
end
else
callmodelstring = [callmodelstring ',~'];
end
end
modelinputs = struct2cell(kvmodel);
% delete name of model function & outputs
modelinputs = modelinputs(2:end-1);
% delete empty cells
modelinputs = modelinputs(~cellfun('isempty',modelinputs));
callmodelstring = [callmodelstring ']=' kvmodel.name '('];
for modelinputscounter = 1:length(modelinputs)
callmodelstring = [callmodelstring num2str(modelinputs{modelinputscounter}) ','];
end
callmodelstring(end:end+1) = ');';
out = par;
out.model = kvmodel;
out.callstrings.model = callmodelstring;
%TODO CALLMODELSTRING
case 'signalinit'
definput.keyvals.name= [];
definput.keyvals.input1 = [];
definput.keyvals.input2 = [];
definput.keyvals.input3 = [];
definput.keyvals.input4 = [];
definput.keyvals.input5 = [];
definput.keyvals.input6 = [];
definput.keyvals.input7 = [];
definput.keyvals.input8 = [];
definput.keyvals.input9 = [];
definput.keyvals.input10 = [];
definput.keyvals.input11 = [];
definput.keyvals.input12 = [];
definput.keyvals.input13 = [];
definput.keyvals.input14 = [];
definput.keyvals.input15 = [];
if iscell(varargin{1}) && nargin == 3
[~,kvsignal]=ltfatarghelper({},definput,varargin{:});
else
[~,kvsignal]=ltfatarghelper({},definput,varargin);
end
out = par;
out.signal = kvsignal;
case 'decisioninit'
definput.keyvals.name= [];
definput.keyvals.input1 = [];
definput.keyvals.input2 = [];
definput.keyvals.input3 = [];
definput.keyvals.input4 = [];
definput.keyvals.input5 = [];
definput.keyvals.input6 = [];
definput.keyvals.input7 = [];
definput.keyvals.input8 = [];
definput.keyvals.input9 = [];
definput.keyvals.input10 = [];
definput.commands.plot = {'noplot','plot'};
if iscell(varargin{1}) && nargin == 3
[~,kvdecision]=ltfatarghelper({},definput,varargin{:});
else
[~,kvdecision]=ltfatarghelper({},definput,varargin);
end
out = par;
out.decision = kvdecision;
case 'run'
definput.flags.plot = {'noplot','plot'};
[commands,~]=ltfatarghelper({},definput,varargin);
if strcmp(par.exp.interface,'ModelInitiative'),
csvwrite(fullfile(par.exp.directory,'a_priori.csv'),...
[par.model.input2, par.model.input3, par.model.input4]);
decision=par.decision;
save(fullfile(par.exp.directory,'decision_parameters.mat'),'decision');
delete(fullfile(par.exp.directory,'detector_out.csv'));
end
% find experimental variable and inttyp variable
sigparnames = fieldnames(par.signal);
for count = 1: length(sigparnames)
name = sigparnames(count);
if strcmp(getfield(par.signal, name{:}),'expvar')
experimentvar = name{:};
elseif strcmp(getfield(par.signal, name{:}),'inttyp')
inttypvar = name{:};
end
end
stepsize = par.exp.expvarstepstart;
truecounter = 0;
par.signal.(experimentvar) = par.exp.expvarstart;
expparvalue = [];
downturn = 0;
upturn = 1;
turncounter = 0;
lastturn = [];
checkmodelout = 0;
condition = 1;
wrongcounter = -1;
trialcounter = 1;
while condition
for interval_num=1:par.exp.intnum
if interval_num == 1
par.signal.(inttypvar) = 'target';
else
par.signal.(inttypvar) = 'reference';
end
signalinputs = struct2cell(par.signal);
% delete name of signal function
signalinputs = signalinputs(2:end);
% delete empty cells
signalinputs = signalinputs(~cellfun('isempty',signalinputs));
% call signalfunction
testsignal = feval(par.signal.name,signalinputs{:});
% call model or transfer files to the model
switch par.exp.interface
case 'AMT'
% find experimental signal variable
modelparnames = fieldnames(par.model);
for count = 1: length(modelparnames)
name = modelparnames(count);
if strcmp(getfield(par.model, name{:}),'expsignal')
experimentsignal = name{:};
break
end
end
par.model.(experimentsignal) = testsignal;
% call model
par.callstrings.model = strrep(par.callstrings.model,'expsignal', 'testsignal');
eval(par.callstrings.model);
case 'ModelInitiative'
audiowrite(fullfile(par.exp.directory,['interval_' num2str(interval_num) '.wav']), testsignal, par.exp.fs);
end
end % for each interval
switch par.exp.interface
case 'AMT'
% find model output variable, only at the first time
if checkmodelout == 0
modeloutvarcount = 1;
decisionparnames = fieldnames(par.decision);
for count = 1:length(decisionparnames)
name = decisionparnames(count);
if strcmp(getfield(par.decision, name{:}),'modelout')
modeloutvar{modeloutvarcount} = name{:};
modeloutvarcount = modeloutvarcount+1;
end
end
checkmodelout = 1;
end
%set model outputs to decsion inputs
for count = 1:modeloutvarcount-1
modeloutname = sprintf('par%i',par.model.outputs(count));
par.decision.(modeloutvar{count}) = modelout.(modeloutname);
end
decisioninputs = struct2cell(par.decision);
% delete name of model function & outputs
decisioninputs = decisioninputs(2:end);
% delete empty cells
decisioninputs = decisioninputs(~cellfun('isempty',decisioninputs));
% call decision
decision = feval(par.decision.name,decisioninputs{:});
case 'ModelInitiative'
amt_disp(['Trial #' num2str(trialcounter) ', ModelInitiative on ' par.exp.directory],'volatile');
while ~exist(fullfile(par.exp.directory,'detector_out.csv'),'file');
pause(.1);
end
fid=-1;
while fid==-1
fid=fopen(fullfile(par.exp.directory,'detector_out.csv'),'r');
end
fclose(fid);
decision=csvread(fullfile(par.exp.directory,'detector_out.csv'));
delete(fullfile(par.exp.directory,'detector_out.csv'));
end
% store expparvalue
expparvalue = [expparvalue par.signal.(experimentvar)];
% count reversals
% wrong answers are par.exp.rule(2)and no low point reversal
if decision ~= 1 && wrongcounter == par.exp.rule(2)-1 && downturn == 0
turncounter = turncounter + 1;
downturn = 1;
upturn = 0;
if stepsize == par.exp.stepmin(1)
lastturn = [lastturn par.signal.(experimentvar)];
end
% right answers are par.exp.rule(1)
% and no high point reversal
elseif decision == 1 && truecounter == par.exp.rule(1)-1 && upturn == 0
turncounter = turncounter + 1;
downturn = 0;
upturn = 1;
if stepsize == par.exp.stepmin(1)
lastturn = [lastturn par.signal.(experimentvar)];
end
end
% change stepsize after par.exp.expvarsteprule(2) reversals, if stepsize
% is not already par.exp.stepmin(1) dB
if turncounter == par.exp.expvarsteprule(2) && truecounter == 1 && ...
stepsize ~= par.exp.stepmin(1)
stepsize = stepsize * par.exp.expvarsteprule(1);
turncounter = 0;
end
if decision == 1
wrongcounter = 0;
truecounter = truecounter + 1;
else
truecounter = 0;
wrongcounter = wrongcounter +1;
end
% amount of right answers is par.exp.rule(1)
if truecounter == par.exp.rule(1)
par.signal.(experimentvar) = par.signal.(experimentvar) - stepsize;
truecounter = 0;
end
% amount of wrong answers is par.exp.rule(2)
if wrongcounter == par.exp.rule(2)
par.signal.(experimentvar) = par.signal.(experimentvar) + stepsize;
wrongcounter = 0;
end
% amount of reversals is par.stepmin(2)
if size(lastturn,2) == par.exp.stepmin(2)
threshold = median(lastturn);
threshstd = std(lastturn,1);
condition = 0;
out = [threshold threshstd expparvalue];
end
trialcounter = trialcounter+1;
end
%clear persistent variables
clear (par.decision.name);
if commands.do_plot
figure
for plotcounter = 1:(size(expparvalue,2)-1)
if expparvalue(plotcounter) < expparvalue(plotcounter+1)
style = 'or';
stem(plotcounter,(expparvalue(plotcounter)),'or',...
'LineStyle','none')
hold on
else
style = '+g';
stem(plotcounter,(expparvalue(plotcounter)),'+g',...
'LineStyle','none')
hold on
end
end
% special case last entry
if decision == 1
stem(plotcounter+1,(expparvalue(plotcounter+1)),'+g',...
'LineStyle','none')
else
stem(plotcounter+1,(expparvalue(plotcounter+1)),'or',...
'LineStyle','none')
end
title(['Threshold (Median): ' num2str(threshold) ...
'dB, Std: ' num2str(threshstd) 'dB'])
end
end