function varargout = baumgartner2014( target,template,varargin )
%BAUMGARTNER2014 Model for localization in sagittal planes
% Usage: [p,rang] = baumgartner2014( target,template )
% [p,rang,tang] = baumgartner2014( target,template )
% [p,rang,tang] = baumgartner2014( target,template,fs,S,lat,stim,fsstim )
% [err,pred] = baumgartner2014( target,template,errorflag )
%
% Input parameters:
% target : binaural impulse response(s) referring to the directional
% transfer function(s) (DFTs) of the target sound(s).
% Option 1: given in SOFA format -> sagittal plane DTFs will
% be extracted internally.
% Option 2: binaural impulse responses of all available
% listener-specific DTFs of the sagittal plane formated
% according to the following matrix dimensions:
% time x direction x channel/ear
% template: binaural impulse responses of all available
% listener-specific DTFs of the sagittal plane referring to
% the perceived lateral angle of the target sound.
% Options 1 & 2 equivalent to target.
%
% Output parameters:
% p : predicted probability mass vectors for response angles
% with respect to target positions
% 1st dim: response angle
% 2nd dim: target angle
% rang : polar response angles (after regularization of angular
% sampling)
% tang : polar target angles (usefull if sagittal-plane HRTFs are
% extracted directly from SOFA object)
% err : predicted localization error (acc. to performance measure
% defined in errorflag*
% pred : structure with fields p, rang, tang*
%
% BAUMGARTNER2014(...) is a model for sound-source localization
% in sagittal planes (SPs). It bases on the comparison of internal sound
% representation with a template and results in a probabilistic
% prediction of polar angle response.
%
% BAUMGARTNER2014 accepts the following optional parameters:
%
% 'fs',fs Define the sampling rate of the impulse responses.
% Default value is 48000 Hz.
%
% 'S',S Set the listener-specific sensitivity threshold
% (threshold of the sigmoid link function representing
% the psychometric link between transformation from the
% distance metric and similarity index) to S.
% Default value is 1.
%
% 'gamma',G Set the degree of selectivity
% (slope of the sigmoid link function representing
% the psychometric link between transformation from the
% distance metric and similarity index) to G.
% Default value is 6.
%
% 'lat',lat Set the apparent lateral angle of the target sound to
% lat. Default value is 0 degree (median SP).
%
% 'stim',stim Define the stimulus (source signal without directional
% features). As default an impulse is used.
%
% 'fsstim',fss Define the sampling rate of the stimulus.
% Default value is 48000 Hz.
%
% 'flow',flow Set the lowest frequency in the filterbank to
% flow. Default value is 700 Hz.
%
% 'fhigh',fhigh Set the highest frequency in the filterbank to
% fhigh. Default value is 18000 Hz.
%
% 'space',sp Set spacing of auditory filter bands (i.e., distance
% between neighbouring bands) to sp in number of
% equivalent rectangular bandwidths (ERBs).
% Default value is 1 ERB.
%
% 'do',do Set the differential order of the spectral gradient
% extraction to do. Default value is 1 and includes
% restriction to positive gradients inspired by cat DCN
% functionality.
%
% 'bwcoef',bwc Set the binaural weighting coefficient bwc.
% Default value is 13 degrees.
%
% 'polsamp',ps Define the polar-angle sampling of the acoustic data
% provided for the current sagittal plane. As default the
% sampling of ARI's HRTFs in the median SP is used, i.e.,
% ps = [-30:5:70,80,100,110:5:210] degrees.
%
% 'rangsamp',rs Define the equi-polar sampling of the response predictions.
% The default is rs = 5 degrees.
%
% 'mrsmsp',eps Set the motoric response scatter eps within the median
% sagittal plane. Default value is 17 degrees.
%
% BAUMGARTNER2014 accepts the following flags:
%
% 'regular' Apply spline interpolation in order to regularize the
% angular sampling of the polar response angle.
% This is the default.
%
% 'noregular' Disable regularization of angular sampling.
%
% 'errorflag' May be one of the error flags defined in
% BAUMGARTNER2014_pmv2ppp or localizationerror.
%
% Requirements:
% -------------
%
% 1) SOFA API from http://sourceforge.net/projects/sofacoustics for Matlab (in e.g. thirdparty/SOFA)
%
% 2) Data in hrtf/baumgartner2014
%
% 3) Circular Statistics Toolbox from http://www.mathworks.com/matlabcentral/fileexchange/10676-circular-statistics-toolbox--directional-statistics-
%
%
% See also: plot_baumgartner2014, data_baumgartner2014,
% exp_baumgartner2014, demo_baumgartner2014, baumgartner2014_calibration,
% baumgartner2014_likelistat, baumgartner2014_pmv2ppp,
% baumgartner2014_virtualexp, baumgartner2014_spectralanalysis,
% baumgartner2014_gradientextraction, baumgartner2014_comparisonprocess,
% baumgartner2014_similarityestimation, baumgartner2014_binauralweighting,
% baumgartner2014_sensorimotormapping
%
% References:
% R. Baumgartner, P. Majdak, and B. Laback. Modeling sound-source
% localization in sagittal planes for human listeners. The Journal of the
% Acoustical Society of America, 136(2):791-802, 2014.
%
% R. Lyon. All pole models of auditory filtering. In E. R. Lewis, G. R.
% Long, R. F. Lyon, P. M. Narins, C. R. Steele, and E. Hecht-Poinar,
% editors, Diversity in auditory mechanics, pages 205-211. World
% Scientific Publishing, Singapore, 1997.
%
%
% Url: http://amtoolbox.sourceforge.net/amt-0.9.9/doc/models/baumgartner2014.php
% Copyright (C) 2009-2015 Piotr Majdak and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 0.9.9
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR: Robert Baumgartner, Acoustics Research Institute, Vienna, Austria
%% Check input
definput.import={'baumgartner2014','baumgartner2014_pmv2ppp','localizationerror'};
[flags,kv]=ltfatarghelper(...
{'fs','S','lat','stim','space','do','flow','fhigh',... %'fsstim'
'bwcoef','polsamp','rangsamp','mrsmsp','gamma'},definput,varargin);
if not(isstruct(target)) && ndims(target) == 2
target = permute(target,[1,3,2]);
warning('Matrix dimensions of target should be: time x direction x channel/ear.')
warning('Since 3rd dimension was empty, 2nd dimension was used as channel dimension.')
end
%% Print Settings
if flags.do_print
if flags.do_nomrs
kv.mrsmsp = 0;
end
amt_disp(['Settings: PSGE = ' num2str(kv.do,'%1.0f') '; Gamma = ' ...
num2str(kv.gamma,'%1.0u') '; Epsilon = ' num2str(kv.mrsmsp,'%1.0f') ' deg'])
end
%% Extract HRTFs of sagittal plane
if isstruct(target) % Targets given in SOFA format
kv.fs = target.Data.SamplingRate;
[target,tang] = extractsp( kv.lat,target );
end
if isstruct(template) % Template given in SOFA format
[template,kv.polsamp] = extractsp( kv.lat,template );
end
% Error handling
if size(template,2) ~= length(kv.polsamp)
fprintf('\n Error: Second dimension of template and length of polsamp need to be of the same size! \n')
return
end
%% DTF filtering, Eq.(1)
dimtar = size(target); % for lconv dim check
if not(isempty(kv.stim))
target = lconv(target,kv.stim);
end
% check that lconv preserved matrix dimensions (earlier bug in lconv)
if size(target,2) ~= dimtar(2)
target = reshape(target,[size(target,1),dimtar(2:end)]);
end
%% Spectral Analysis, Eq.(2)
[ireptar,fc] = baumgartner2014_spectralanalysis(target,'argimport',flags,kv);
ireptem = baumgartner2014_spectralanalysis(template,'argimport',flags,kv);
%% Positive spectral gradient extraction, Eq.(3)
if kv.do == 1 % DCN inspired feature extraction
nrep.tem = baumgartner2014_gradientextraction(ireptem,fc);
nrep.tar = baumgartner2014_gradientextraction(ireptar,fc);
else
nrep.tem = ireptem;
nrep.tar = ireptar;
end
%% Comparison process, Eq.(4)
sigma = baumgartner2014_comparisonprocess(nrep.tar,nrep.tem);
%% Similarity estimation, Eq.(5)
si = baumgartner2014_similarityestimation(sigma,'argimport',flags,kv);
%% Binaural weighting, Eq.(6)
si = baumgartner2014_binauralweighting(si,'argimport',flags,kv);
%% Sensorimotor mapping, Eq.(7)
[si,rang] = baumgartner2014_sensorimotormapping(si,'argimport',flags,kv);
%% Normalization to PMV, Eq.(8)
p = si ./ repmat(sum(si)+eps,size(si,1),1);
%% Performance measures
if not(isempty(flags.errorflag)) % Simulate virtual experiments
m = baumgartner2014_virtualexp(p,tang,rang,'targetset',kv.exptang);
err = localizationerror(m,flags.errorflag);
elseif not(isempty(flags.ppp)) % Calculate directly via probabilities
if flags.do_QE_PE_EB
[err.qe,err.pe,err.pb] = baumgartner2014_pmv2ppp(p,tang,rang,'exptang',kv.exptang);
else
err = baumgartner2014_pmv2ppp(p,tang,rang,flags.ppp,'exptang',kv.exptang);
end
end
%% Output
if isempty([flags.errorflag,flags.ppp])
varargout{1} = p;
if nargout >= 2
varargout{2} = rang;
if nargout >= 3
try
varargout{3} = tang;
catch
disp('SOFA Object of target DTFs is required to output target angles.')
end
end
end
else
varargout{1} = err;
if nargout > 1
varargout{2} = struct('p',p,'rang',rang,'tang',tang);
end
end
end