function [E,varargout] = baumgartner2017( target,template,varargin )
%BAUMGARTNER2017 Model for sound externalization
% Usage: [E,lat] = baumgartner2017( target,template )
%
% Input parameters:
% target : binaural impulse response(s) referring to the directional
% transfer function(s) (DFTs) of the target sound(s).
% Option 1: given in SOFA format -> sagittal plane DTFs will
% be extracted internally.
% Option 2: binaural impulse responses of all available
% listener-specific DTFs of the sagittal plane formated
% according to the following matrix dimensions:
% time x direction x channel/ear
% template: binaural impulse responses of all available
% listener-specific DTFs of the sagittal plane referring to
% the perceived lateral angle of the target sound.
% Options 1 & 2 equivalent to target.
%
% Output parameters:
% E : predicted degree of externalization
% lat : lateral angle as predicted by wierstorf2013 model
%
% BAUMGARTNER2017(...) is a model for sound externalization.
% It bases on the comparison of the intra-aural internal representation
% of the incoming sound with a template and results in a probabilistic
% prediction of polar angle response.
%
% BAUMGARTNER2017 accepts the following optional parameters:
%
% 'fs',fs Define the sampling rate of the impulse responses.
% Default value is 48000 Hz.
%
% 'S',S Set the listener-specific sensitivity threshold
% (threshold of the sigmoid link function representing
% the psychometric link between transformation from the
% distance metric and similarity index) to S.
% Default value is 1.
%
% 'lat',lat Set the apparent lateral angle of the target sound to
% lat. Default value is 0 degree (median SP).
%
% 'stim',stim Define the stimulus (source signal without directional
% features). As default an impulse is used.
%
% 'fsstim',fss Define the sampling rate of the stimulus.
% Default value is 48000 Hz.
%
% 'flow',flow Set the lowest frequency in the filterbank to
% flow. Default value is 700 Hz.
%
% 'fhigh',fhigh Set the highest frequency in the filterbank to
% fhigh. Default value is 18000 Hz.
%
% 'space',sp Set spacing of auditory filter bands (i.e., distance
% between neighbouring bands) to sp in number of
% equivalent rectangular bandwidths (ERBs).
% Default value is 1 ERB.
%
% 'do',do Set the differential order of the spectral gradient
% extraction to do. Default value is 1 and includes
% restriction to positive gradients inspired by cat DCN
% functionality.
%
% 'bwcoef',bwc Set the binaural weighting coefficient bwc.
% Default value is 13 degrees.
%
% Requirements:
% -------------
%
% 1) SOFA API from http://sourceforge.net/projects/sofacoustics for Matlab (in e.g. thirdparty/SOFA)
%
% 2) Data in hrtf/baumgartner2017
%
% 3) Circular Statistics Toolbox from http://www.mathworks.com/matlabcentral/fileexchange/10676-circular-statistics-toolbox--directional-statistics-
%
%
% See also: baumgartner2014_spectralanalysis,
% baumgartner2014_gradientextraction, baumgartner2014_binauralweighting
%
% Url: http://amtoolbox.sourceforge.net/amt-0.9.9/doc/models/baumgartner2017.php
% Copyright (C) 2009-2015 Piotr Majdak and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 0.9.9
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR: Robert Baumgartner, Acoustics Research Institute, Vienna, Austria
%% Check input
definput.import={'baumgartner2014','baumgartner2014_pmv2ppp','localizationerror','amt_cache'};
definput.keyvals.tempWin = 1; % temporal integration window in sec
definput.flags.normalize = {'regular','normalize'};
definput.flags.cueProcessing = {'intraaural','interaural'};
definput.flags.middleEarFilter = {'','middleEarFilter'};
definput.keyvals.JND = 1.5;
definput.keyvals.c1 = 3.78;
definput.keyvals.c2 = 1;
definput.keyvals.z1 = 0.99;
[flags,kv]=ltfatarghelper(...
{'fs','S','lat','stim','space','do','flow','fhigh',... %'fsstim'
'bwcoef','polsamp','rangsamp','mrsmsp','gamma'},definput,varargin);
if not(isstruct(target)) && ismatrix(target)
target = permute(target,[1,3,2]);
% warning(['Matrix dimensions of target should be: time x direction x channel/ear.' ...
% 'Since 3rd dimension was empty, 2nd dimension was used as channel dimension.'])
end
if not(isstruct(template)) && ismatrix(template)
template = permute(template,[1,3,2]);
% warning(['Matrix dimensions of template should be: time x direction x channel/ear.' ...
% 'Since 3rd dimension was empty, 2nd dimension was used as channel dimension.'])
end
%% Print Settings
if flags.do_print
if flags.do_nomrs
kv.mrsmsp = 0;
end
amt_disp(['Settings: PSGE = ' num2str(kv.do,'%1.0f') '; Gamma = ' ...
num2str(kv.gamma,'%1.0u') '; Epsilon = ' num2str(kv.mrsmsp,'%1.0f') ' deg'])
end
%% Determine lateral angle and extract HRTFs of sagittal plane
if isstruct(target) % Targets given in SOFA format
kv.fs = target.Data.SamplingRate;
[target,tang] = extractsp( kv.lat,target );
% else
% fncache = ['latLookup_',template.GLOBAL_ListenerShortName];
% latLookup = amt_cache('get',fncache,flags.cachemode);
% if isempty(latLookup)
% latLookup = itd2angle_lookuptable(template,template.Data.SamplingRate,'dietz2011');
% amt_cache('set',fncache,latLookup)
% end
% tarSig = squeeze(target);
% kv.lat = wierstorf2013_estimateazimuth(tarSig,latLookup,'fs',kv.fs,'dietz2011','rms_weighting');
% disp(kv.lat)
end
if isstruct(template) % Template given in SOFA format
[template,rang] = extractsp( kv.lat,template );
end
% Error handling
% if size(template,2) ~= length(rang)
% fprintf('\n Error: Second dimension of template and length of polsamp need to be of the same size! \n')
% return
% end
%% Middle ear filter
if flags.do_middleEarFilter
b=middleearfilter(kv.fs);
target = filter(b,1,target);
template = filter(b,1,template);
end
%% DTF filtering, Eq.(1)
dimtar = size(target); % for lconv dim check
if not(isempty(kv.stim))
target = lconv(target,kv.stim);
end
% check that lconv preserved matrix dimensions (earlier bug in lconv)
if size(target,2) ~= dimtar(2)
target = reshape(target,[size(target,1),dimtar(2:end)]);
end
frameLength = round((kv.tempWin*kv.fs));
Nframes = floor(size(target,1)/frameLength);
if Nframes == 0
Nframes = 1;
frameLength = size(target,1);
target = cat(1,target,zeros(frameLength-size(target,1),size(target,2),size(target,3)));
end
Nang = size(template,2);
bsi = nan(Nframes,Nang);
tem.mp = [];
for iframe = 1:Nframes
idt = (1:frameLength) + (iframe-1)*frameLength;
%% Spectral Analysis, Eq.(2)
[tar.mp,fc] = baumgartner2014_spectralanalysis(target(idt,:,:),'argimport',flags,kv);
if isempty(tem.mp) % integration across whole time range
tem.mp = baumgartner2014_spectralanalysis(template,'argimport',flags,kv);
end
if flags.do_intraaural
%% Positive spectral gradient extraction, Eq.(3)
if kv.do == 1 % DCN inspired feature extraction
nrep.tem = baumgartner2014_gradientextraction(tem.mp,fc);
nrep.tar = baumgartner2014_gradientextraction(tar.mp,fc);
else
nrep.tem = tem.mp;
nrep.tar = tar.mp;
end
%% Comparison process, Eq.(4)
% sigma = baumgartner2017comparisonprocess(nrep.tar,nrep.tem); % based on vector product with 0s excluded (nan)
% sigma = mean(repmat(nrep.tar,1,Nang).*nrep.tem)./mean(nrep.tem.^2);
dNrep = abs(repmat(nrep.tar,1,Nang)-nrep.tem);
dNrep(dNrep < kv.JND) = 0;
sigma = mean(dNrep);
%% Similarity estimation, Eq.(5)
si = exp(-kv.S*sigma);
% si = sigma.^kv.S;
% si = baumgartner2014_similarityestimation(sigma,'argimport',flags,kv);
%% Binaural weighting, Eq.(6)
bsi(iframe,:) = baumgartner2014_binauralweighting(si,'argimport',flags,kv);
%% Normalize
% if flags.do_normalize
% % if not(exist('bsiRef','var'))
% sigmaRef = baumgartner2017comparisonprocess(nrep.tem,nrep.tem);
% siRef = sigmaRef.^kv.S;
% bsiRef = baumgartner2014_binauralweighting(siRef,'argimport',flags,kv);
% % end
% bsi(iframe) = bsi(iframe)/bsiRef;
% end
else % interaural
%% ILDs
tar.ild = -diff(tar.mp,1,3); % ILD = left - right
tem.ild = -diff(tem.mp,1,3);
% figure; plot(fc,tar.ild); hold on; plot(fc,tem.ild); legend('tar','tem')
%% target-template comparison -> ILD deviation
dILD = abs(tem.ild-repmat(tar.ild,1,Nang));
dILD(dILD < kv.JND) = 0; % limit minimum ILD difference according to JND
%% overall normalized ILD deviation
dILDnorm(iframe,:) = mean(dILD./abs(tem.ild));
%% Externalization mapping
bsi(iframe,:) = exp(-kv.S*dILDnorm(iframe,:));
end
%% Scaling
bsi(iframe) = kv.c1*bsi(iframe) +kv.c2;
end
E = max(bsi);%min(1,max(bsi));%geomean(bsi);
if nargout >= 2
varargout{1} = kv.lat;
end
end