This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).
function [V,Y,E,CF]=verhulst2012(sign,fs,fc,spl,normalizeRMS,subject,irregularities)
%VERHULST2012 Process a signal with the cochlear model by Verhulst et. al. 2012
% Usage: output = verhulst2012(insig,fs,fc,spl,normalizeRMS,subject,irregularities,sheraPo)
%
% Input parameters:
% sign : the input signal to be processed. Each column is processed
% in parallel, so it is possible to run several
% simulation in parallel
% fs : sampling rate
% fc : list of frequencies specifying the probe positions on
% the basilar membrane, or 'all' to probe all 1000
% cochlear sections
% spl : array of the sound pressure levels that correspond to
% value 1 of the correspondent input signal
% normalizeRms : arry to control the normalization of each
% signal. With value 1 normalize the energy of the signal, so the
% relative spl value correspond to the rms of the signal (default 0)
% subject : the subject number controls the cochlear irregulatiries (default 1)
% irregularities : array that enable (1) or disable (0)
% irregularities and nonlinearities for each simulation (default 1)
%
% Output parameters:
% V : velocity of the basilar membrane sections V(time,section,channel)
% Y : displacement of the basilar membrane sections Y(time,section,channel)
% E : sound pressure at the middle ear
% CF : center frequencies of the probed basiliar membrane sections
%
% This function computes the basilar membrane displacement and the
% velocity of the movement at different positions employing a faster
% implementation of the nonlinear time-domain model of cochlea by
% Verhulsts, Dau, Shera 2012, through the method described in Alto? et
% al. 2014
%
% The processing is implemented as follows:
%
% 1) the input signal is resampled to the 96 kHz sampling rate
% employed in the cochlea model
%
% 2) the list of frequencies in fc are converted in to probe
% positions in a manner that the frequencies are divided evenly into
% low and high frequency categories.
%
% 3) the signals are processed in parallel
%
% 4) the values obtained are resampled back to the original sampling
% rate
%
% Requirements and installation:
% ------------------------------
%
% 1) Python >2.6 is required with numpy and scipi packages. On Linux, use sudo apt-get install python-scipy python-numpy
%
% 2) Compiled files with a C-compiler, e.g. gcc. In amtbase/src/verhulst start make (Linux) or make.bat (Windows)
%
% 3) On linux, when problems with GFORTRAN lib appear, try sudo ln -sf /usr/lib64/libgfortran.so.3.0.0 /mymatlabroot/sys/os/glnxa64/libgfortran.so.3 (mymatlabroot is usually /usr/local/MATLAB/version
%
% See also: verhulst2012,
%
% References:
% S. Verhulst, T. Dau, and C. A. Shera. Nonlinear time-domain cochlear
% model for transient stimulation and human otoacoustic emission. J.
% Acoust. Soc. Am., 132(6):3842 - 3848, 2012.
%
% A. Altoè, S. Verhulst, and V. Pulkki. Transmission line cochlear
% models: improved accuracy and efficiency. J. Acoust. Soc. Am.,
% 136(EL302), 2014.
%
%
% AUTHOR: Alessandro Altoe'
%
% Url: http://amtoolbox.sourceforge.net/amt-0.9.9/doc/models/verhulst2012.php
% Copyright (C) 2009-2015 Piotr Majdak and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 0.9.9
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
if nargin<5
[channels,idx]=min(size(sign));
normalizeRMS=zeros(channels,1);
end
if nargin < 6
subject = 1;
end
if nargin<7
[channels,idx]=min(size(sign));
irregularities=ones(1,channels);
end
% sign=double(sign); %force to write signal as double array
Fs=96000;
sectionsNo=1000;
[channels,idx]=min(size(sign));
if(idx==2) %transpose it (python C-style row major order)
sign=sign';
end
stim=zeros(channels,length(resample(sign(1,:),Fs,fs)));
for i=1:channels
stim(i,:)=resample(sign(i,:),Fs,fs);
% figure; plot(stim(i,:));
if normalizeRMS(i)
s_rms=rms(stim(i,:));
stim(i,:)=stim(i,:)./s_rms;
end
end
sheraPo=0.061;
if(isstr(fc) && strcmp(fc,'all')) %if probing all sections 1001 output (1000 sections plus the middle ear)
p=sectionsNo;
else %else pass it as a column vector
[p,idx]=max(size(fc));
if(idx==2)
fc=fc';
end
fc=round(fc);
end
probes=fc;
[path,name,ext]=fileparts(which('verhulst2012'));
[path,name,ext]=fileparts(path);
act_path=pwd;
cd(strcat(path,'/bin/verhulst2012/'));
if ~exist('tridiag.so','file')
error('tridiag.so library is missing. Goto to AMT/bin/verhulst2012 and compile by executing the makefile');
end
save('input.mat','stim','Fs','channels','spl','subject','sheraPo','irregularities','probes','-v7');
system('python run_cochlear_model.py');
l=length(stim(1,:));
rl=length(resample(stim(1,:),fs,Fs));
V=zeros(rl,p,channels);
Y=zeros(rl,p,channels);
E=zeros(rl,channels);
CF=zeros(p,1);
for i=1:channels
fname=strcat('out/v',int2str(i),'.np');
f=fopen(fname,'r');
V(:,:,i)=resample(fread(f,[p,l],'double','n')',fs,Fs);
fclose(f);
fname=strcat('out/y',int2str(i),'.np');
f=fopen(fname,'r');
Y(:,:,i)=resample(fread(f,[p,l],'double','n')',fs,Fs);
fclose(f);
fname=strcat('out/E',int2str(i),'.np');
f=fopen(fname,'r');
E(:,i)=resample(fread(f,[l,1],'double','n'),fs,Fs);
fclose(f);
if(i==1)
fname=strcat('out/F',int2str(i),'.np');
f=fopen(fname,'r');
CF=fread(f,[p,1],'double','n');
fclose(f);
end
end
cd(act_path);