This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).
function [gp,gfc] = baumgartner2016_gradientextraction(mp,fc,varargin)
%baumgartner2016_gradientextraction - Extraction of positive spectral gradients
% Usage: [gp,gfc] = baumgartner2016_gradientextraction(mp,fc)
%
% Input parameters:
% mp : discharge rate profile
% fc : center frequencies
%
% Output parameters:
% gp : positive spectral gradient profile. Fields: gp.m for
% magnitude and gp.sd for standard deviation.
% Dimensions (4-6 optional):
% 1) frequency, 2) position (polar angle), 3) channel (L/R),
% 4) fiber type, 5) time frame.
% gfc : center frequencies of gradient profile
%
% BAUMGARTNER2016_GRADIENTEXTRACTION(...) is a spectral cue extractor
% inspired by functionality of dorsal cochlear nucleus in cats.
%
% References:
% R. Baumgartner, P. Majdak, and B. Laback. Modeling sound-source
% localization in sagittal planes for human listeners. The Journal of the
% Acoustical Society of America, 136(2):791-802, 2014.
%
%
% Url: http://amtoolbox.sourceforge.net/amt-0.9.9/doc/modelstages/baumgartner2016_gradientextraction.php
% Copyright (C) 2009-2015 Piotr Majdak and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 0.9.9
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR: Robert Baumgartner
definput.import={'baumgartner2016'};
definput.keyvals.c2 = 1;
[flags,kv]=ltfatarghelper({'c2'},definput,varargin);
% if isempty(varargin) || not(isempty(varargin)) && not(isstruct(varargin{1}))
% definput.import={'baumgartner2016','amt_cache'};
% definput.keyvals.c2 = 1;
% [flags,kv]=ltfatarghelper({'c2'},definput,varargin);
% else % kv and flags directly transfered
% kv = varargin{1};
% flags = varargin{2};
% kv.c2 = 1;
% end
%% Parameter Settings
% if not(exist('c2','var'))
c2 = kv.c2; % inhibitory coupling between type II mpd type IV neurons
% end
c4 = 1; % coupling between AN and type IV neuron
dilatation = 1; % of tonotopical 1-ERB-spacing between type IV mpd II neurons
erb = audfiltbw(fc);
%% Calculations
Nb = size(mp,1); % # auditory bands
dgpt2 = round(mean(erb(2:end)./diff(fc))*dilatation); % tonotopical distance between type IV mpd II neurons
mpm = mp;
mpsd = 2.6 * mpm.^0.34; % variability of discharge rate (May and Huang, 1997)
gp.m = zeros(Nb-dgpt2,size(mp,2),size(mp,3),size(mp,4),size(mp,5)); % type IV output
gp.sd = gp.m;
for b = 1:Nb-dgpt2
gp.m(b,:,:,:,:) = c4 * mpm(b+dgpt2,:,:,:,:) - c2 * mpm(b,:,:,:,:);
gp.sd(b,:,:,:,:) = sqrt( (c4*mpsd(b+dgpt2,:,:,:,:)).^2 + (c2*mpsd(b,:,:,:,:)).^2 );
end
% Restriction to positive gradients
% hard restriction
% gp.m = (gp.m + c2*abs(gp.m))/2; % gp = max(gp,0);
% soft restriction
% kv.mgs = 10; % constant to stretch the atan
gp.m = kv.mgs*(atan(gp.m/kv.mgs-pi/2)+pi/2);
gp.sd = gp.sd/2; % ROUGH APPROXIMATION assuming that non-linear restriction to positive gradients halfs the rate variability
gfc = fc(dgpt2+1:end);
% if nargout > 1
end