function [gp,gfc] = baumgartner2016_gradientextraction(mp,fc,varargin)
%baumgartner2016_gradientextraction - Extraction of positive spectral gradients
% Usage: [gp,gfc] = baumgartner2016_gradientextraction(mp,fc)
%
% Input parameters:
% mp : discharge rate profile
% fc : center frequencies
%
% Output parameters:
% gp : positive spectral gradient profile. Fields: gp.m for
% magnitude and gp.sd for standard deviation.
% Dimensions (4-6 optional):
% 1) frequency, 2) position (polar angle), 3) channel (L/R),
% 4) fiber type, 5) time frame.
% gfc : center frequencies of gradient profile
%
% BAUMGARTNER2016_GRADIENTEXTRACTION(...) is a spectral cue extractor
% inspired by functionality of dorsal cochlear nucleus in cats.
%
% References:
% R. Baumgartner, P. Majdak, and B. Laback. Modeling sound-source
% localization in sagittal planes for human listeners. The Journal of the
% Acoustical Society of America, 136(2):791-802, 2014.
%
%
% Url: http://amtoolbox.sourceforge.net/amt-0.9.9/doc/modelstages/baumgartner2016_gradientextraction.php
% Copyright (C) 2009-2015 Piotr Majdak and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 0.9.9
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR: Robert Baumgartner
definput.import={'baumgartner2016'};
definput.keyvals.c2 = 1;
[flags,kv]=ltfatarghelper({'c2'},definput,varargin);
% if isempty(varargin) || not(isempty(varargin)) && not(isstruct(varargin{1}))
% definput.import={'baumgartner2016','amt_cache'};
% definput.keyvals.c2 = 1;
% [flags,kv]=ltfatarghelper({'c2'},definput,varargin);
% else % kv and flags directly transfered
% kv = varargin{1};
% flags = varargin{2};
% kv.c2 = 1;
% end
%% Parameter Settings
% if not(exist('c2','var'))
c2 = kv.c2; % inhibitory coupling between type II mpd type IV neurons
% end
c4 = 1; % coupling between AN and type IV neuron
dilatation = 1; % of tonotopical 1-ERB-spacing between type IV mpd II neurons
erb = audfiltbw(fc);
%% Calculations
Nb = size(mp,1); % # auditory bands
dgpt2 = round(mean(erb(2:end)./diff(fc))*dilatation); % tonotopical distance between type IV mpd II neurons
mpm = mp;
mpsd = 2.6 * mpm.^0.34; % variability of discharge rate (May and Huang, 1997)
gp.m = zeros(Nb-dgpt2,size(mp,2),size(mp,3),size(mp,4),size(mp,5)); % type IV output
gp.sd = gp.m;
for b = 1:Nb-dgpt2
gp.m(b,:,:,:,:) = c4 * mpm(b+dgpt2,:,:,:,:) - c2 * mpm(b,:,:,:,:);
gp.sd(b,:,:,:,:) = sqrt( (c4*mpsd(b+dgpt2,:,:,:,:)).^2 + (c2*mpsd(b,:,:,:,:)).^2 );
end
% Restriction to positive gradients
% hard restriction
% gp.m = (gp.m + c2*abs(gp.m))/2; % gp = max(gp,0);
% soft restriction
% kv.mgs = 10; % constant to stretch the atan
gp.m = kv.mgs*(atan(gp.m/kv.mgs-pi/2)+pi/2);
gp.sd = gp.sd/2; % ROUGH APPROXIMATION assuming that non-linear restriction to positive gradients halfs the rate variability
gfc = fc(dgpt2+1:end);
% if nargout > 1
end