This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).
function [waveVamp, waveVlat] = roenne2012_chirp(levels,chirps,varargin)
%roenne2012_chirp Simulate chirp evoked ABRs
% Usage: [waveVamp, waveVlat] = ronne2012_chirp(flag)
%
% Output parameters:
% waveVamp : Amplitude of simulated ABR wave V.
% waveVlat : Latency of simulated ABR wave V peak.
%
% ronne2012_chirp(levels,chirps) returns simulations from Rønne et
% al. (2012) for a range of input levels levels. The values of
% chirps selects which stimuli from Elberling et al. (2010) stimuli to
% simulate, 1 = click, 2 to 6 = chirp 1 to 5.
%
% Simulates ABR responses to five chirps and one click using the ABR model
% of Rønne et al. (2012). Fig. 6 or 7 of Rønne et al. (2012) can be
% reproduced based on these data - use plot_ROENNE2012_CHIRP. Simulations
% can be compared to data from Elberling et al. (2010). Stimuli are
% defined similar to Elberling et al. (2010).
%
% This function takes the following optional parameters:
%
% 'plot2' Plot extra figures for all individual simulations (3
% figures x stimulus levels x number of chirps).
%
% 'noplot' Do not plot main figure (fig 6 or 7).
%
% 'plot' Plot main figure (fig 6 or 7). See PLOT_ROENNE2012_CHIRP.
%
% ---------
%
% Please cite Rønne et al. (2012) and Zilany and Bruce (2007) if you use
% this model.
%
% See also: roenne2012, plot_roenne2012_chirp, exp_roenne2012
%
% References:
% C. Elberling, J. Calloe, and M. Don. Evaluating auditory brainstem
% responses to different chirp stimuli at three levels of stimulation. J.
% Acoust. Soc. Am., 128(1):215-223, 2010.
%
% F. M. Rønne, T. Dau, J. Harte, and C. Elberling. Modeling auditory
% evoked brainstem responses to transient stimuli. The Journal of the
% Acoustical Society of America, 131(5):3903-3913, 2012. [1]http ]
%
% M. S. A. Zilany and I. C. Bruce. Representation of the vowel (epsilon)
% in normal and impaired auditory nerve fibers: Model predictions of
% responses in cats. J. Acoust. Soc. Am., 122(1):402-417, jul 2007.
%
% References
%
% 1. http://scitation.aip.org/content/asa/journal/jasa/131/5/10.1121/1.3699171
%
%
% Url: http://amtoolbox.sourceforge.net/amt-0.9.9/doc/modelstages/roenne2012_chirp.php
% Copyright (C) 2009-2015 Piotr Majdak and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 0.9.9
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% Define input flags
definput.flags.plot = {'noplot','plot','plot2'};
[flags,kv] = ltfatarghelper({},definput,varargin);
%% Init
fsmod = 200000; % AN model fs
% load Unitary Response and its samlping frequency
[ur,fs]=data_roenne2012;
% load Elberling et al (2010) click and chirp stimuli
[Elberlingstim,fsstim] = data_elberling2010('stim');
% length of modelling [ms]
modellength = 40;
% Output filter corresponding to recording settings (see Elberling et al
% 2010 section 3)
b=fir1(200,[100/(fs/2),3000/(fs/2)]);
a=1;
%% ABR model
% Loop over stimulus levels
for L = 1:length(levels)
lvl = levels(L);
% Loop over chosen Elberling et al. (2010) stimuli
for CE = chirps
% Define length of stimulus, uses variable modellength
stim = zeros(modellength/1000*fsstim,1);
% Use one of Elberling et al. (2010) stimuli
stimCE = Elberlingstim.(['c' num2str(CE-1)]);
% Create stimulus with chirp stimulus and concatenated zeros => combined
% length = "modellength"
stim(1:length(stimCE)) = stimCE;
% call AN model, note that lots of extra outputs are possible
[ANout,vFreq] = zilany2007(lvl, stim', fsstim, fsmod);
% Subtract 50 due to spontaneous rate
ANout = ANout'-50;
% Sum in time across fibers = summed activity pattern
ANsum = sum(ANout,2);
% Downsample ANsum to get fs = fs_UR = 30kHz
ANsum = resample(ANsum ,fs,fsmod);
% Simulated potential = UR * ANsum (* = convolved)
simpot = filter(ur,1,ANsum);
% apply output filter similar to the recording conditions in
% Elberling et al. (2010)
simpot = filtfilt(b,a,simpot);
% Find max peak value (wave V)
maxpeak(CE,L) = max(simpot);
% Find corresponding time of max peak value (latency of wave V)
waveVlat(CE,L) = find(simpot == maxpeak(CE,L));
% find minimum in the interval from "max peak" to 6.7 ms later
minpeak(CE,L) = min(simpot(find(simpot == maxpeak(CE,L)):find(simpot == maxpeak(CE,L))+200));
%% PLOTS, extra plots created for all conditions used, i.e. three
% plots for each stimulus level x each chirp sweeping rate. If this
% is switched on and all other variables are set to default,
% 3 (levels) x 6 (chirps / clicks) x 3 (different figures) = 48
% figures will be created.
if flags.do_plot2
% Plot simulated ABR
figure, t = 1e3.*[0:length(simpot)-1]./fs-15;
plot(t,simpot,'k','linewidth',2),xlabel('time [ms]'),
title(['Simulated ABR (Elberling et al stimulus c' ...
num2str(CE-1) ' at ' num2str(lvl) 'dB)']),
set(gca, 'fontsize',12), axis([0 10 -.2 .3])
% Plot "AN-gram" - spectrogram-like representation of the
% discharge rate after the IHC-AN synapse
figure, set(gca, 'fontsize',12),imagesc(ANout'),
title(['ANgram - (Elberling et al stimulus c' num2str(CE-1) ...
' at ' num2str(lvl) 'dB)'])
set(gca,'YTick',[1 100 200 300 400 500]),
set(gca,'YTicklabel',round(vFreq([1 100 200 300 400 500]))),
ylabel('model CF'), xlabel('time [ms]'),set(gca,'XTick',(0:500:8000)),
set(gca,'XTicklabel',(0:500:8000)/fsmod*1000-15), xlabel('time [ms]'),
xlim([12/1000*fsmod 26/1000*fsmod]),colorbar
% Plot "AN-UR-gram" - spectrogram-like representation of the
% discharge rate convolved line by line with the UR.
figure, ANUR = resample(ANout,fs,fsmod);
ANUR = filter(ur,1,ANUR); imagesc(ANUR'),
set(gca,'YTick',[1 100 200 300 400 500]),
set(gca,'YTicklabel',round(vFreq([1 100 200 300 400 500]))),
ylabel('model CF'), xlabel('time [ms]'),
set(gca,'XTick',(0:150:1500)), xlabel('time [ms]'),
set(gca,'XTicklabel',(0:150:1500)/fs*1000-15)
colorbar, xlim([450 1000]),
title(['AN-URgram (Elberling et al stimulus c' num2str(CE-1) ' stimulus at ' num2str(lvl) 'dB)'])
end
end
end
% Calculate wave V amplitude, as the difference between the peak and
% the dip.
waveVamp = (maxpeak-minpeak);
% Subtract 15 ms as click stimulus peaks 15 ms into the time series
waveVlat = waveVlat*1000/fs-15;
if flags.do_plot
figure;
plot_roenne2012_chirp(waveVamp, waveVlat);
end